(2009•上海模擬)已知無窮等比數(shù)列{an}的前n項(xiàng)和為Sn,各項(xiàng)的和為S,且
lim
n→∞
(Sn-2S)=1
,則其首項(xiàng)a1的取值范圍是( 。
分析:由S=
a1
1-q
,Sn=S•(1-qn),知Sn-2S=-S(1+qn),由
lim
n→∞
(Sn-2S)=1
,知-S
lim
n→∞
(1+qn) =1
,由此能求出首項(xiàng)a1的取值范圍.
解答:解:∵S=
a1
1-q
,Sn=S•(1-qn
∴Sn-2S=-S(1+qn),
lim
n→∞
(Sn-2S)=1
,
-S
lim
n→∞
(1+qn) =1
,
∵無窮等比數(shù)列,0<|q|<1,
lim
n→∞
qn=0
,
∴S=-1,
a1
1-q
=-1

q=a1+1.
0<|a1+1|<1,
解得-2<a1<0且a1≠-1.
首項(xiàng)a1的取值范圍是(-2,-1)∪((-1,0).
故選B.
點(diǎn)評:本題考查數(shù)列的極限的應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意等比數(shù)列的前n項(xiàng)和公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)在解決問題:“證明數(shù)集A={x|2<x≤3}沒有最小數(shù)”時,可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)x=
n0
m0
是B中的最大數(shù),則可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒有最大數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度均為n-m,其中n>m.
(1)若關(guān)于x的不等式2ax2-12x-3>0的解集構(gòu)成的區(qū)間的長度為
6
,求實(shí)數(shù)a的值;
(2)已知關(guān)于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集構(gòu)成的各區(qū)間的長度和超過
π
3
,求實(shí)數(shù)b的取值范圍;
(3)已知關(guān)于x的不等式組
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集構(gòu)成的各區(qū)間長度和為6,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)已知全集U=R,集合A={x|x2-2x-3≤0,x∈R},B={x||x-2|<2,x∈R},那么集合A∩B=
{x|0<x≤3}
{x|0<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)已知集合A={z|z=1+i+i2+…+in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A},(z1可以等于z2),從集合B中任取一元素,則該元素的模為
2
的概率為
2
7
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(3)對上述等腰三角形AnBnAn+1添加適當(dāng)條件,提出一個問題,并做出解答.(根據(jù)所提問題及解答的完整程度,分檔次給分)

查看答案和解析>>

同步練習(xí)冊答案