【題目】已知橢圓的左焦點為,右頂點為,點的坐標為的面積為過點的動直線被橢圓所截得的線段長度的最小值為 .

(I)求橢圓的方程;

(Ⅱ) 是橢圓上異于頂點的一點,且直線是線段延長線上一點,且,的半徑為的兩條切線,切點分別為,求的最大值,并求出取得最大值時直線的斜率 .

【答案】(Ⅰ) (Ⅱ)的最大值為,取得最大值時直線的斜率為.

【解析】分析:(Ⅰ)由已知,可得,解得設(shè)橢圓方程:,

當直線斜率不存在時,線段長為

當直線斜率存在時,設(shè)方程:,由弦長公式可得的長小于,

易知當時,的最小值為,從而,由此得到橢圓的方程;(

Ⅱ)由(Ⅰ)知,,而的半徑,

又直線的方程為,可得

由題意可知,要求的最大值,即求的最小值,由題意可知,轉(zhuǎn)化為關(guān)于的函數(shù),換元后利用配方法可得

的最大值,以及取得最大值時直線的斜率 .

詳解:

(Ⅰ)由已知,可得.又由,可得,解得

設(shè)橢圓方程:,

當直線斜率不存在時,線段長為;

當直線斜率存在時,設(shè)方程:,

,得,從而

,

易知當時,的最小值為,從而,因此,橢圓的方程為:.

(Ⅱ)由第(Ⅰ)問知,,而的半徑,

又直線的方程為,由,得

因此,

由題意可知,要求的最大值,即求的最小值

,令,則

因此, ,

當且僅當,即時等號成立,此時,

所以,因此,所以的最大值為.

綜上所述,的最大值為,取得最大值時直線的斜率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四面體中,,則四面體體積最大時,它的外接球半徑_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)如圖所示的某種容器的體積為,它是由圓錐和圓柱兩部分連接而成,圓柱與圓錐的底面半徑都為.圓錐的高為,母線與底面所成的角為;圓柱的高為已知圓柱底面的造價為,圓柱側(cè)面造價為,圓錐側(cè)面造價為

(1)將圓柱的高表示為底面半徑的函數(shù),并求出定義域;

(2)當容器造價最低時,圓柱的底面半徑為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某建材商場國慶期間搞促銷活動,規(guī)定:顧客購物總金額不超過800元,不享受任何折扣;如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,并按下表折扣分別累計計算:

可以享受折扣優(yōu)惠金額

折扣率

不超過500元的部分

超過500元的部分

若某顧客在此商場獲得的折扣金額為50元,則此人購物實際所付金額為  

A.1500元B.1550元C.1750元D.1800元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓),圓),若圓的一條切線與橢圓相交于兩點.

(1)當, 時,若點都在坐標軸的正半軸上,求橢圓的方程;

(2)若以為直徑的圓經(jīng)過坐標原點,探究是否滿足,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式時恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

0

0

5

0

1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應位置,并直接寫出函數(shù)的解析式;

2)將圖象上所有點向左平行移動個單位長度,并把圖象上所有點的橫坐標縮短為原來的(縱坐標不變),得到的圖象.圖象的一個對稱中心為,求的最小值;

3)在(2)條件下,求上的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代十進制的算籌計數(shù)法,在世界數(shù)學史上是一個偉大的創(chuàng)造,算籌實際上是一根根同樣長短的小木棍,如圖,算籌表示數(shù)1~9的方法的一種.

例如:163可表示為“”27可表示為“”問現(xiàn)有8根算籌可以表示三位數(shù)的個數(shù)(算籌不能剩余)為( )

A. 48 B. 60 C. 96 D. 120

查看答案和解析>>

同步練習冊答案