已知雙曲線C:-=1(a>0,b<0)的右頂點、右焦點分別為A、F,它的左準線與x軸的交點為B,若A是線段BF的中點,則雙曲線C的離心率為   
【答案】分析:先求出A、F、B 的坐標,根據(jù)A是線段BF的中點,得到2a=c-,解方程求出e.
解答:解:由題意得,A(a,0)、F(c,0),B (-,0),
∵A是線段BF的中點,
∴2a=c-,c2-2ac-a2=0,e2-2e-1=0,又e>1,
∴e=+1,
故答案為+1.
點評:本題考查雙曲線的定義和雙曲線的標準方程,以及雙曲線的簡單性質(zhì)的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:-=1(0<<1)的右焦點為B,過點B作直線交雙曲線C的右支于M、N兩點,試確定的范圍,使·=0,其中點O為坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (2012年高考湖南卷理科5)已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A.-=1  B.-=1  C.-=1    D.-=1

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣西南寧二中高三(下)5月月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知雙曲線C:=1(a>0,b>0)的離心率為,右準線方程為x=
(I)求雙曲線C的方程;
(Ⅱ)設直線l是圓O:x2+y2=2上動點P(x,y)(xy≠0)處的切線,l與雙曲線C交于不同的兩點A,B,證明∠AOB的大小為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖南邵陽石齊學校高二第三次月考理科數(shù)學試卷(解析版) 題型:選擇題

 已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為(   )

A. -=1  B. -=1  C. -=1    D. -=1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(湖南卷解析版) 題型:選擇題

已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A、-=1  B、-=1  C、-=1    D、-=1[w~#

 

查看答案和解析>>

同步練習冊答案