15.已知集合A={x|y=$\sqrt{m+1-x}$},B={x|x<-4或x>2}
(1)若m=-2,求A∩(∁RB);
(2)若A∪B=B,求實數(shù)m的取值范圍.

分析 (1)若m=-2,A={x|y=$\sqrt{m+1-x}$}={x|x≤-1},∁RB={x|-4≤x≤2},即可求A∩(∁RB);
(2)若A∪B=B,A⊆B,利用A={x|x≤1+m},B={x|x<-4或x>2},即可求實數(shù)m的取值范圍.

解答 解:(1)m=-2,A={x|y=$\sqrt{m+1-x}$}={x|x≤-1},∁RB={x|-4≤x≤2},
∴A∩(∁RB)={x|-4≤x≤-1};
(2)若A∪B=B,則A⊆B,
∵A={x|x≤1+m},B={x|x<-4或x>2}
∴1+m<-4,
∴m<-5.

點評 本題考查的知識點是集合關系中的參數(shù)取值問題,交,并,補集的混合運算,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{OP}=(-8m,-6cos\frac{π}{3})$與單位向量(1,0)所成的角為θ,且$cosθ=-\frac{4}{5}$,則m的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-2|+|x+a|.
(1)若a=1,解不等式 f(x)≤2|x-2|;
(2)若f(x)≥2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x∈N*|-2<x≤2},B={y|y=2x,x∈A}|,C={z|z=1+log2y,y∈B},則A∩C=( 。
A.{1,2}B.{2}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知y=f(x)是定義在R上的奇函數(shù),且當x<0時f(x)=$\left\{\begin{array}{l}{-(x+3)^{2}+2,x<-2}\\{1,-2≤x<0}\end{array}\right.$則方程f(x-2)=-$\frac{2}{3}$(x-2)的實數(shù)根的個數(shù)為( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2+4x-1.
(1)當a=1時,對任意x1,x2∈R,且x1≠x2,試比較f($\frac{{x}_{1}+{x}_{2}}{2}$)與$\frac{f({x}_{1})+f({x}_{2})}{2}$的大小;
(2)對于給定的正實數(shù)a,有一個最小的負數(shù)g(a),使得x∈[g(a),0]時,-3≤f(x)≤3都成立,則當a為何值時,g(a)最小,并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A,B,C所對的邊分別是a,b,c,且滿足cos2C-cos2A=2cos($\frac{π}{6}$-C)cos($\frac{π}{6}$+C).
(1)求角A的大小;
(2)若A<$\frac{π}{2}$,BC=$\sqrt{3}$,且sinA+sin(B-C)=2sin2C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=ex(ax2+bx+c)的導函數(shù)y=f′(x)的兩個零點為-3和0.(其中e=2.71828…)
(Ⅰ)當a>0時,求f(x)的單調區(qū)間;
(Ⅱ)若f(x)的極小值為-e3,求f(x)在區(qū)間[-5,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設相量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若m$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,則實數(shù)m等于(  )
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.$\frac{9}{10}$D.-$\frac{9}{10}$

查看答案和解析>>

同步練習冊答案