【題目】如圖,已知等邊中,,分別為,邊的中點,為的中點,為邊上一點,且,將沿折到的位置,使平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】詳見解析.
【解析】
試題分析:(1)首先根據(jù)已知條件可證出,再由面面垂直的性質(zhì)定理并結(jié)合平面平面可得出平面,然后再由和可證得,再在正中易證得平面,最后由面面垂直的判定定理即可得出所證的結(jié)論;(2)首先建立空間直角坐標(biāo)系,并正確寫出各點的空間坐標(biāo),然后由法向量的定義分別求出平面和平面的法向量,最后由公式即可計算出所求的角的大小.
試題解析:(Ⅰ)因為,為等邊的,邊的中點,
所以是等邊三角形,且.因為是的中點,所以.
又由于平面平面,平面,所以平面.
又平面,所以.因為,所以,所以.
在正中知,所以.而,所以平面.
又因為平面,所以平面平面.
(Ⅱ)設(shè)等邊的邊長為4,取中點,連接,由題設(shè)知,由(Ⅰ)知平面,又平面,所以,如圖建立空間直角坐標(biāo)系,則,,,,.
設(shè)平面的一個法向量為,則
由得令,則.
平面的一個法向量為,所以,
顯然二面角是銳角.所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
函數(shù).
(1)當(dāng)時,求函數(shù)的定義域;
(2)若,判斷的奇偶性;
(3)是否存在實數(shù),使函數(shù)在遞增,并且最大值為1,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量(升)關(guān)于行駛速度(千米/小時)的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(Ⅰ)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(II)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是兩條不同直線,,是兩個不同平面,則下列命題正確的是( )
A.若,垂直于同一平面,則與平行
B.若,平行于同一平面,則與平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若,不平行,則與不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于不同的兩點,.
(Ⅰ)寫出圓的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;
(Ⅱ)若弦長,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(Ⅰ)當(dāng),時,設(shè),求證:對任意的,;
(Ⅱ)當(dāng)時,若對任意,不等式恒成立.求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機抽取個進行檢查,測得每個球的直徑(單位:),將數(shù)據(jù)進行分組,得到如下頻率分布表:
(1)求、、及、的值,并畫出頻率分布直方圖(結(jié)果保留兩位小數(shù));
(2)已知標(biāo)準(zhǔn)乒乓球的直徑為,直徑誤差不超過的為五星乒乓球,若這批乒乓球共有個,試估計其中五星乒乓球的數(shù)目;
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是)作為代表,估計這批乒乓球直徑的平均值和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機抽取個進行檢查,測得每個球的直徑(單位:),將數(shù)據(jù)進行分組,得到如下頻率分布表:
(1)求、、及、的值,并畫出頻率分布直方圖(結(jié)果保留兩位小數(shù));
(2)已知標(biāo)準(zhǔn)乒乓球的直徑為,直徑誤差不超過的為五星乒乓球,若這批乒乓球共有個,試估計其中五星乒乓球的數(shù)目;
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是)作為代表,估計這批乒乓球直徑的平均值和中位數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com