已知雙曲線中心在原點且一個焦點為,直線與其相交于兩點,且的中點的橫坐標(biāo)為,則此雙曲線的方程式為(   )

A.     B.     C.     D.

 

【答案】

D

【解析】

試題分析:依題意設(shè)雙曲線方程為因為的中點的橫坐標(biāo)為,中點也在直線上,所以中點的縱坐標(biāo)為,設(shè),分別代入雙曲線方程并作差,可得又因為一個焦點為,所以,兩式聯(lián)立,可以解得所以雙曲線方程為.

考點:本小題主要考查直線與雙曲線位置關(guān)系的應(yīng)用和雙曲線標(biāo)準方程的求解,考查學(xué)生點差法的應(yīng)用.

點評:研究直線與圓錐曲線的位置關(guān)系時,涉及到弦的中點時,一般都用點差法,可以簡化計算.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點且一個焦點為F(
7
,0),直線y=x-1與其相交于M、N兩點,MN中點的橫坐標(biāo)為-
2
3
,則此雙曲線的方程是(  )
A、
x2
3
-
y2
4
=1
B、
x2
4
-
y2
3
=1
C、
x2
5
-
y2
2
=1
D、
x2
2
-
y2
5
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點,焦點在x軸上,實軸長為2.一條斜率為1的直線經(jīng)過雙曲線的右焦點與雙曲線相交于A、B兩點,以AB為直徑的圓與雙曲線的右準線相交于M、N.
(1)若雙曲線的離心率2,求圓的半徑;
(2)設(shè)AB中點為H,若
HM
HN
=-
16
3
,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點且一個焦點為F1(-
5
, 0)
,點P位于該雙曲線上,線段PF1的中點坐標(biāo)為(0,2),則雙曲線的方程為( 。
A、
x2
4
-y2=1
B、x2-
y2
4
=1
C、
x2
2
-
y2
3
=1
D、
x2
3
-
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點且一個焦點為F(
7
,0),直線y=x-1與其相交于M、N兩點,MN中點的橫坐標(biāo)為-
2
3
,則此雙曲線的方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點,一個焦點為F1(-
5
,0)
,點P在雙曲線上,且線段PF1的中點坐標(biāo)為(0,2),則此雙曲線的離心率是
5
5

查看答案和解析>>

同步練習(xí)冊答案