(2006•東城區(qū)二模)(
2x2
+x)6
的展開式中的常數(shù)項是
60
60
.(用數(shù)字作答)
分析:在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項.
解答:解:由于(
2
x2
+x)6
的展開式的通項公式為 Tr+1=
C
r
6
•(2x-26-r•xr=
C
r
6
•26-r•x3r-12
令3r-12=0,r=4,故展開式中的常數(shù)項是
C
4
6
•4=60,
故答案為 60.
點評:本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)二模)已知等差數(shù)列{an}中,a7+a9=10,a4=1,則a12的值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)二模)設(shè){an}是正數(shù)組成的等比數(shù)列,a1+a2=1,a3+a4=4,則a4+a5=
8
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)二模)已知四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AD=1,AB=2,E、F分別是AB、PD的中點.
(1)求證:AF∥平面PEC;
(2)求PC與平面ABCD所成角的大。
(3)求二面角P-EC-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)二模)已知橢圓M的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),P是此橢圓上的一點,且
PF1
PF2
=0
,
|PF1|
|PF2|
=8

(1)求橢圓M的方程;
(2)點A是橢圓M短軸的一個端點,且其縱坐標大于零,B、C是橢圓上不同于點A的兩點,若△ABC的重心是橢圓的右焦點,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)二模)設(shè)f-1(x)是函數(shù)f(x)=log3(x+6)的反函數(shù),若[f-1(a)+6][f-1(b)+6]=27,則f(a+b)的值為( 。

查看答案和解析>>

同步練習冊答案