16.若一個(gè)正三棱柱的三視圖如圖所示,則這個(gè)正三棱柱的體積為( 。
A.8B.$\frac{8}{3}$$\sqrt{3}$C.8$\sqrt{3}$D.4$\sqrt{3}$

分析 由三視圖可知:該正三棱柱的高為2,底面正三角形的一邊上的高為2$\sqrt{3}$,可得邊長(zhǎng)為4.即可得出底面正三角形的面積與這個(gè)正三棱柱的體積.

解答 解:由三視圖可知:該正三棱柱的高為2,底面正三角形的一邊上的高為2$\sqrt{3}$,可得邊長(zhǎng)為4.
∴底面正三角形的面積=$\frac{\sqrt{3}}{4}×{4}^{2}$=4$\sqrt{3}$.
∴這個(gè)正三棱柱的體積V=$2×4\sqrt{3}$=8$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了正三棱柱的三視圖及其體積計(jì)算公式、正三角形的邊角關(guān)系及其面積,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作圓O與斜邊AB交于N,過(guò)點(diǎn)O作OM∥AC,交BC于M,交圓O于Q.
(Ⅰ)求證:MN是圓O的切線;
(Ⅱ)求證:MN•BC=MQ•AC+MQ•AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB=$\sqrt{3}$,BC=1,AA1=AC=2,E、F分別為A1C1、BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE;
(3)求多面體A1B1C1-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱AB,BC的中點(diǎn),點(diǎn)E1,F(xiàn)1分別是棱A1D1,C1D1的中點(diǎn).求證:EE1∥FF1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點(diǎn)M為PC上的點(diǎn),且PM=2MC.
(1)求證:AD⊥PB;
(2)若AB=PD=2,求三棱錐D-BPM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知空間兩條直線a、b沒(méi)有公共點(diǎn),則a和b( 。
A.一定是異面直線B.一定是平行直線
C.不可能是平行直線D.不可能是相交直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}各項(xiàng)均不相等,滿足an+an-2=2an-1(n≥3,n∈N+),其前3項(xiàng)的和為9,且a4+1是a2+1與a8+1的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn+1-bn=an(n∈N+),且b1=-1,求數(shù)列$\frac{1}{_{n}+3n}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐E-ABCD中,地面ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,AC與BD相交于點(diǎn)G.
(1)求證:AE∥平面BFD;
(2)求證:AE⊥平面BCE;
(3)求三棱錐A-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD的底面為直角梯形,且∠BAD=∠ADC=90°,E,F(xiàn),G分別為PA,PB,PC的中點(diǎn),直線PB⊥平面EFG,AB=$\frac{1}{3}$DC=$\frac{1}{3}$AD=1.
(1)若點(diǎn)M∈平面EFG,且與點(diǎn)E不重合,判斷直線EM與平面ABCD的關(guān)系,并說(shuō)明理由;
(2)若直線PD與平面PBC的夾角為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案