已知函數(shù).
(1)若是函數(shù)的極值點,求曲線在點處的切線方程;
(2)若函數(shù)在上為單調(diào)增函數(shù),求的取值范圍.
(1);(2).
解析試題分析:解題思路:(1)求導(dǎo)函數(shù),利用求;利用導(dǎo)數(shù)的幾何意義求切線方程;(2)利用“若函數(shù)在某區(qū)間上單調(diào)遞增,則在該區(qū)間恒成立”求解.規(guī)律總結(jié):(1)導(dǎo)數(shù)的幾何意義求切線方程:;(2)若函數(shù)在某區(qū)間上單調(diào)遞增,則在該區(qū)間恒成立;“若函數(shù)在某區(qū)間上單調(diào)遞減,則在該區(qū)間恒成立.
試題解析:(1)
由題意知,代入得,經(jīng)檢驗,符合題意.
從而切線斜率,切點為,
切線方程為.
(2)
因為上為單調(diào)增函數(shù),所以上恒成立.
即在上恒成立;當(dāng)時,由,得;設(shè),.
.所以當(dāng)且僅當(dāng),即時,有最大值2.所以所以.
所以的取值范圍是
考點:1.導(dǎo)數(shù)的幾何意義;2.根據(jù)函數(shù)的單調(diào)性求參數(shù).
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知..
(1)求函數(shù)在區(qū)間上的最小值;
(2)對一切實數(shù),恒成立,求實數(shù)的取值范圍;
(3) 證明對一切, 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)g(x)="aln" x·f(x)=x3 +x2+bx
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實數(shù)b的范圍;
(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)b=0時,設(shè)F(x)=,對任意給定的正實數(shù)a,曲線y=F(x)上是否存在兩點P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點)為直角頂點的直角三角形,而且此三角形斜邊中點在y軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),().
(1)若x=3是的極值點,求在[1,a]上的最小值和最大值;
(2)若在時是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實數(shù)的值;
(3)設(shè)有兩個極值點、(),求實數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個不同的實根,求實數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)校或班級舉行活動,通常需要張貼海報進(jìn)行宣傳。現(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要求版心面積為128dm2 ,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計海報的尺寸才能
使四周空白面積最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com