(1+
2
x2
)(
x
-
1
x
6展開式中的常數(shù)項(xiàng)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由二項(xiàng)式定理可得(
x
-
1
x
6展開式的常數(shù)項(xiàng)為15,且不存在二次項(xiàng),由多項(xiàng)式的乘法可得答案.
解答: 解:由二項(xiàng)式定理可得(
x
-
1
x
6展開式的通項(xiàng)為Tk+1=
C
k
6
•(
x
6-k•(-
1
x
k=(-1)k
C
k
6
x
6-3k
2

6-3k
2
=0可得k=2,可得(
x
-
1
x
6展開式的常數(shù)項(xiàng)為15,
6-3k
2
=2可得k=
2
3
,可得(
x
-
1
x
6展開式中不存在二次項(xiàng),
故(1+
2
x2
)(
x
-
1
x
6展開式中的常數(shù)項(xiàng)為1×15=15
故答案為:15
點(diǎn)評:本題考查二項(xiàng)式系數(shù)的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x4-8x3+25x2-30x+8,則f(0.01)=
 
.(保留小數(shù)點(diǎn)后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)=
ax2+bx+c
x2+d
在x=1處取得極值2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)A(x0,y0)為f(x)圖象上任意一點(diǎn),直線l與f(x)的圖象相切于點(diǎn)A,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)
3
2
(-x2+
5
3
)≥
1
2
(x2+7)-3x;
(2)1-x-x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期是π,若其圖象向右平移
π
3
個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象( 。
A、關(guān)于點(diǎn)(
π
12
,0)對稱
B、關(guān)于直線x=
π
12
對稱
C、關(guān)于點(diǎn)(
12
,0)對稱
D、關(guān)于直線x=
12
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x-sin(2x-
6
).
(Ⅰ)求函數(shù)f(x)的最大值,并寫出f(x)取最大值時(shí)x的取值集合;
(Ⅱ)已知△ABC中,角A,B,C的對邊分別為a,b,c若f(A)=
3
2
,b+c=2.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)P(0,2)的直線與圓x2+y2=1相切,則切線的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司在2014年上半年的收入x(單位:萬元)與月支出y(單位:萬元)的統(tǒng)計(jì)資料如下表所示:
月份1月份2月份3月份4月份5月份6月份
收入x12.314.515.017.019.820.6
支出Y5.635.755.825.896.116.18
根據(jù)統(tǒng)計(jì)資料,則(  )
A、月收入的中位數(shù)是15,x與y有正線性相關(guān)關(guān)系
B、月收入的中位數(shù)是17,x與y有負(fù)線性相關(guān)關(guān)系
C、月收入的中位數(shù)是16,x與y有正線性相關(guān)關(guān)系
D、月收入的中位數(shù)是16,x與y有負(fù)線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別為(0,1),(
2
,0),(0,-2),O為坐標(biāo)原點(diǎn),動點(diǎn)P滿足|
CP
|=1,則|
OA
+
OB
+
OP
|的最小值是(  )
A、4-2
3
B、
3
-1
C、
3
+1
D、
3

查看答案和解析>>

同步練習(xí)冊答案