(2012•邯鄲模擬)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若?x∈R,f(x)<0或g(x)<0,則m的取值范圍是(  )
分析:通過(guò)g(x)=2x-2≥0時(shí),x≥1,根據(jù)題意有f(x)=m(x-2m)(x+m+3)<0在x>1時(shí)成立,根據(jù)二次函數(shù)的性質(zhì)可求滿(mǎn)足的條件,即可求解m的取值范圍.
解答:解:∵g(x)=2x-2,當(dāng)x≥1時(shí),g(x)≥0,
又∵?x∈R,f(x)<0或g(x)<0
∴此時(shí)f(x)=m(x-2m)(x+m+3)<0在x≥1時(shí)恒成立
則由二次函數(shù)的性質(zhì)可知開(kāi)口只能向下,且二次函數(shù)與x軸交點(diǎn)都在(1,0)的左面
m<0
-m-3<1
  2m<1   

∴-4<m<0
故選B.
點(diǎn)評(píng):本題主要考查了全稱(chēng)命題與特稱(chēng)命題的成立,指數(shù)函數(shù)與二次函數(shù)性質(zhì)的應(yīng)用是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲模擬)四棱錐P-ABCD的五個(gè)頂點(diǎn)都在一個(gè)球面上,其三視圖如圖所示,E、F分別是棱AB、CD的中點(diǎn),直線EF被球面所截得的線段長(zhǎng)為2
2
,則該球表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲模擬)已知函數(shù)f(x)=2cosx•sin(x-
π
6
)-
1
2
].
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c且c=
3
,角C滿(mǎn)足f(C)=0,若sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲模擬)已知兩定點(diǎn)E(-2,0),F(xiàn)(2,0),動(dòng)點(diǎn)P滿(mǎn)足
PE
PF
=0
,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M滿(mǎn)足
PM
=
MQ
,點(diǎn)M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過(guò)點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),點(diǎn)N滿(mǎn)足
ON
=
OA
+
OB
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲模擬)在空間給出下面四個(gè)命題(其中m、n為不同的兩條直線,α、β為不同的兩個(gè)平面)
①m⊥α,n∥α⇒m⊥n
②m∥n,n∥α⇒m∥α
③m∥n,n⊥β,m∥α⇒α⊥β
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
其中正確的命題個(gè)數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案