【題目】已知函數f(x)對定義域內R內的任意x都有f(x)=f(4﹣x),且當x≠2時,其導數f'(x)滿足xf'(x)>2f'(x),若2<a<4,則( )
A.
B.
C.
D.
【答案】B
【解析】解:∵函數f(x)對定義域R內的任意x都有f(x)=f(4﹣x), ∴f(x)關于直線x=2對稱;
又當x≠2時其導函數f′(x)滿足xf′(x)>2f′(x)f′(x)(x﹣2)>0,
∴當x>2時,f′(x)>0,f(x)在(2,+∞)上的單調遞增;
同理可得,當x<2時,f(x)在(﹣∞,2)單調遞減;
∵2<a<4,
令g(x)= ,x∈(2,4),則g′(x)= ,
令g′(x)>0,解得:x>e,令g′(x)<0,解得:x<e,
故g(x)在(2,e)遞減,在(e,4)遞增,
故g(x)的最大值是g(2)=g(4)= ,最小值是g(e)= ;
令h(x)= ,則h′(x)= ,
故h(x)在(2,e)遞增,在(e,4)遞減,
故h(x)的最小值是h(2)=h(4)= ,h(x)的最大值是h(e)= ,
故2> > > > ,
∴f( )<f ,
而2x>4,故f(2x)>f(0),
∴f( )<f <f(2x),
故選:B.
由f(x)=f(4﹣x),可知函數f(x)關于直線x=2對稱,由xf′(x)>2f′(x),可知f(x)在(﹣∞,2)與(2,+∞)上的單調性,從而可得答案.
科目:高中數學 來源: 題型:
【題目】某學校有2500名學生,其中高一1000人,高二900人,高三600人,為了了解學生的身體健康狀況,采用分層抽樣的方法,若從本校學生中抽取100人,從高一和高三抽取樣本數分別為a,b,且直線ax+by+8=0與以A(1,﹣1)為圓心的圓交于B,C兩點,且∠BAC=120°,則圓C的方程為( )
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】宋元時期數學名著《算學啟蒙》中有關于“松竹并生”的問題,松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的a=10,b=4,則輸出的n=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的圓柱O1O2中,等腰梯形ABCD內接于下底面圓O1 , AB∥CD,且AB為圓O1的直徑,EA和FC都是圓柱O1O2的母線,M為線段EF的中點.
(1)求證:MO1∥平面BCF;
(2)已知BC=1,∠ABC=60°,且直線AF與平面ABC所成的角為30°,求平面MAB與平面EAD所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且Sn+2=2an , 等差數列{bn}的前n項和為Tn , 且T2=S2=b3 .
(1)求數列{bn}的通項公式;
(2)令 ,求數列{cn}的前n項和Rn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視臺推出一檔游戲類綜藝節(jié)目,選手面對1﹣5號五扇大門,依次按響門上的門鈴,門鈴會播放一段音樂,選手需正確回答這首歌的名字,回答正確,大門打開,并獲得相應的家庭夢想基金,回答每一扇門后,選手可自由選擇帶著目前的獎金離開,還是繼續(xù)挑戰(zhàn)后面的門以獲得更多的夢想基金,但是一旦回答錯誤,游戲結束并將之前獲得的所有夢想基金清零;整個游戲過程中,選手有一次求助機會,選手可以詢問親友團成員以獲得正確答案. 1﹣5號門對應的家庭夢想基金依次為3000元、6000元、8000元、12000元、24000元(以上基金金額為打開大門后的累積金額,如第三扇大門打開,選手可獲基金總金額為8000元);設某選手正確回答每一扇門的歌曲名字的概率為pi(i=1,2,…,5),且pi= (i=1,2,…,5),親友團正確回答每一扇門的歌曲名字的概率均為 ,該選手正確回答每一扇門的歌名后選擇繼續(xù)挑戰(zhàn)后面的門的概率均為 ;
(1)求選手在第三扇門使用求助且最終獲得12000元家庭夢想基金的概率;
(2)若選手在整個游戲過程中不使用求助,且獲得的家庭夢想基金數額為X(元),求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣alnx,g(x)=﹣ ,其中a∈R
(1)設函數h(x)=f(x)﹣g(x),求函數h(x)的單調區(qū)間;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com