14、(選做題)如圖,四邊形ABCD內(nèi)接于⊙O,BC是直徑,MN與⊙O相切,切點為A,∠MAB=35°,則∠D=
125°
分析:由已知中,MN與⊙O相切,切點為A,我們易根據(jù)弦切角定理,得到∠D=∠NAB,由已知中∠MAB=35°,由鄰補(bǔ)角定理,我們易求出∠NAB的大小,進(jìn)而求出∠D.
解答:解:連接OA,由于A是切點,故OA⊥MN
∵∠MAB=35°,
∴∠BAO=55°,
又MN與⊙O相切,切點為A,
又由弦切角定理,我們可得
∠AOB=70°
故∠B=55°
∴則∠D=125°
故答案為:125°
點評:本題考查的知識點是弦切角定理,鄰補(bǔ)角的性質(zhì),其中由弦切角定理,得到∠AOB=70°,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、選做題:如圖,點A、B、C是圓O上的點,且AB=4,∠ACB=30°,則圓O的面積等于
16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=
3
5
5
3
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何證明選講選做題)如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=60°,則∠BCD=
150°
150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評閱計分.
1(1).(幾何證明選講選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,
延長AB和DC相交于點P,若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
6
6
6
6

(2).(坐標(biāo)系與參數(shù)方程選做題) 極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上
的動點,B為直線ρcosθ+ρsinθ-7=0的動點,則|AB|距離的最小值為
4
2
-2
4
2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分.)
A.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,兩點A(3,
π
3
)
,B(4,
3
)
間的距離是
13
13

B.(不等式選講選做題)若不等式|x+1|+|x-2|>5的解集為
(-∞,-2)∪(3,+∞)
(-∞,-2)∪(3,+∞)

C.(幾何證明選講選做題)如圖,點A,B,C是圓O上的點,且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

查看答案和解析>>

同步練習(xí)冊答案