分析 先求出函數(shù)f(x)的表達(dá)式,結(jié)合函數(shù)的零點(diǎn)定理判斷即可.
解答 解:∵函數(shù)f(x)=x2+bx+4滿足f(1+x)=f(1-x),
∴-$\frac{2}$=1,解得b=-2,
∴f(x)=x2-2x+4.
若函數(shù)y=f(3x)-m在x∈[-1,2]上有零點(diǎn),
即[f(3-1)-m][f(32)-m]≤0,
解得:$\frac{31}{9}$≤m≤11,
故答案為:[$\frac{31}{9}$,67].
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的零點(diǎn)的判定定理,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\frac{32}{63}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com