20.函數(shù)f(x)=2x2-3|x|+1的單調(diào)遞減區(qū)間是[0,$\frac{3}{4}$],(-∞,-$\frac{3}{4}$).

分析 利用零點分段函數(shù)將函數(shù)解析式化為分段函數(shù)的形式,進而結(jié)合二次函數(shù)的圖象和性質(zhì),畫出函數(shù)的圖象,數(shù)形結(jié)合可得答案.

解答 解:函數(shù)f(x)=2x2-3|x|+1=$\left\{\begin{array}{l}2{x}^{2}+3x+1.x<0\\ 2{x}^{2}-3x+1.x≥0\end{array}\right.$的圖象如下圖所示:

由圖可得:函數(shù)f(x)=2x2-3|x|+1的單調(diào)遞減區(qū)間是[0,$\frac{3}{4}$],(-∞,-$\frac{3}{4}$),
故答案為:[0,$\frac{3}{4}$],(-∞,-$\frac{3}{4}$)

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,二次函數(shù)的圖象和性質(zhì),函數(shù)的單調(diào)區(qū)間,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.計算:sin0-cos(-$\frac{7π}{3}$)+tan(-$\frac{5π}{4}$)+cos$\frac{π}{2}$+sin$\frac{11π}{6}$+tanπ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,$\overrightarrow{a}$與$\overrightarrow$不共線,若向量k$\overrightarrow{a}$+$\overrightarrow$與k$\overrightarrow{a}$-$\overrightarrow$互相垂直,則實數(shù)k的值為(  )
A.$\frac{5}{3}$B.$\frac{3}{5}$C.±$\frac{3}{5}$D.±$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=$\frac{[x]}{x}$(x>0),則給出以下四個結(jié)論正確的是( 。
A.函數(shù)f(x)的值域為[0,1]
B.函數(shù)f(x)的圖象是一條曲線
C.函數(shù)f(x)是(0,+∞)上的減函數(shù)
D.函數(shù)g(x)=f(x)-a有且僅有3個零點時$\frac{3}{4}$<a≤$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知集合A={x|x2-2ax+4a2-3=0},集合B={x|x2-x-2=0},集合C={x|x2+2x-8=0}.
(1)若A∩B≠∅,A∩C=∅,求實數(shù)a的值;
(2)若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.執(zhí)行下面框圖,則輸出m的結(jié)果是( 。
 
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.根據(jù)圖1所示的程序,得到了y與x的函數(shù)圖象,如圖2.若點M是y軸正半軸上任意一點,過點M作PQ∥x軸交圖象于點P,Q,連接OP,OQ.則以下結(jié)論:
①x<0 時,y=$\frac{2}{x}$
②△OPQ的面積為定值.
③x>0時,y隨x的增大而增大.
④MQ=2PM.
⑤∠POQ可以等于90°.其中正確結(jié)論是( 。
A.①②④B.②④⑤C.③④⑤D.②③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)全集U={a,b,c,d,e},集合A={a,c,d},則∁UA={b,e}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知f(x)=$\left\{\begin{array}{l}(4+2a)x-8,x<1\\{log_a}x\;\;,\;\;\;\;\;\;\;\;\;\;x≥1\end{array}$是R上的增函數(shù),那么a的取值范圍是1<a≤2.

查看答案和解析>>

同步練習冊答案