【題目】如圖,在四棱錐中,平面,,,,,直線與平面所成的角為,是的中點.
(1)求證:平面平面;
(2)求直線與平面所成角的正切值.
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)已知可以證明出為平行四邊形,利用平行四邊形的性質(zhì),結合余弦定理,勾股定理的逆定理,根據(jù)線面、面面垂直的判定定理進行證明即可;
(2)設為中點,連接,,則,由(1)中的結論可以證明平面平面,從而有平面,為直線與平面所成的角,利用銳角的三角函數(shù)值定義進行求解即可.
(1)由已知,,且,則為平行四邊形,
,又,則,由知,
則為正三角形,
在中,,,
由余弦定理知,,
有,,
又,,則平面,
而平面,則平面平面.
(2)設為中點,連接,,則,
因為平面,平面,則平面平面,
則平面,為直線與平面所成的角,
又直線與平面所成的角為,則,
又,,
所以在中,,
即直線與平面所成角的正切值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,,并且函數(shù)在實數(shù)集上是單調(diào)增函數(shù),求實數(shù)的取值范圍;
(2)若,,,求函數(shù)在區(qū)間上的值域;
(3)若,都不為0,記函數(shù)的圖象為曲線,設點,是曲線上的不同兩點,點為線段的中點,過點作軸的垂線交曲線于點.試問:曲線在點處的切線是否平行于直線?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)若點在直線上,求直線的極坐標方程;
(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.
(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;
(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,,橢圓上一點到的距離之和為4.過點作直線的垂線交直線于點.
(1)求橢圓的標準方程;
(2)試判斷直線與橢圓公共點的個數(shù),并說明理由;
(3)直線與直線交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的一個頂點為,焦點在x軸上,若橢圓的右焦點到直線的距離是3.
求橢圓E的方程;
設過點A的直線l與該橢圓交于另一點B,當弦AB的長度最大時,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com