【題目】如圖,在四棱錐中,平面,,,,,直線與平面所成的角為的中點.

1)求證:平面平面;

2)求直線與平面所成角的正切值.

【答案】1)證明見解析(2

【解析】

1)根據(jù)已知可以證明出為平行四邊形,利用平行四邊形的性質(zhì),結合余弦定理,勾股定理的逆定理,根據(jù)線面、面面垂直的判定定理進行證明即可;

2)設中點,連接,,則,由(1)中的結論可以證明平面平面,從而有平面,為直線與平面所成的角,利用銳角的三角函數(shù)值定義進行求解即可.

1)由已知,,且,則為平行四邊形,

,又,則,由,

為正三角形,

中,,,

由余弦定理知,,

,,

,,則平面

平面,則平面平面.

2)設中點,連接,,則,

因為平面,平面,則平面平面,

平面為直線與平面所成的角,

又直線與平面所成的角為,則

,

所以在中,,

即直線與平面所成角的正切值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,,并且函數(shù)在實數(shù)集上是單調(diào)增函數(shù),求實數(shù)的取值范圍;

2)若,,求函數(shù)在區(qū)間上的值域;

3)若,都不為0,記函數(shù)的圖象為曲線,設點,是曲線上的不同兩點,點為線段的中點,過點軸的垂線交曲線于點.試問:曲線在點處的切線是否平行于直線?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)若點在直線上,求直線的極坐標方程;

(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,點,,動點滿足,點為線段的中點,拋物線上點的縱坐標為,.

(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;

(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)求的最大值與最小值;

(2)若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,橢圓上一點的距離之和為4.過點作直線的垂線交直線于點

1)求橢圓的標準方程;

2)試判斷直線與橢圓公共點的個數(shù),并說明理由;

3)直線與直線交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】單位正方體內(nèi)部或邊界上不共面的四個點構成的四面體體積的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的一個頂點為,焦點在x軸上,若橢圓的右焦點到直線的距離是3

求橢圓E的方程;

設過點A的直線l與該橢圓交于另一點B,當弦AB的長度最大時,求直線l的方程.

查看答案和解析>>

同步練習冊答案