1-8a2-
1
2a2
(a≠0)的最大值為
 
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:變形利用基本不等式的性質(zhì)即可得出.
解答: 解:1-8a2-
1
2a2
=1-(8a2+
1
2a2
)
≤1-2
8a2
1
2a2
=-3,當(dāng)且僅當(dāng)a=±
1
2
時取等號.
∴1-8a2-
1
2a2
(a≠0)的最大值為-3.
故答案為:-3.
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

則已知角α滿足40°+k•360°<α<140°+k•360°(k∈Z),則
α
2
所在象限是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=
x+3
x+1
-2
的定義域為A,g(x)=lg[(1-x)(x+1)]的定義域為B,求集合A、B、A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)集A={a1,a2,…,an}.定義:a1+a2+…+an為集合A的“均值“,則集合{1,2,…,2013}的所有非空子集的“均值“的算術(shù)平均值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個向量
a
=(t,
x
),
b
=(x+1,
u
2
),其中t,u都是正實數(shù),且
a
=2
b
,則
t
u
的取值范圍是( 。
A、[1,6]
B、[-6,1]
C、[4,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中a5+a6=4,則log2(2 a1•2 a2•2 a3•…•2a10)=( 。
A、10
B、20
C、40
D、2+log25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,則“a+b>4”是“a>2,且b>2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)(1-2i)2的共軛復(fù)數(shù)對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(已知下面式中字母都是正數(shù)
(1)化簡:(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)÷(-3a
1
2
b
5
6
);
(2)用logax,logay,logaz表示:lg
x
y2z

查看答案和解析>>

同步練習(xí)冊答案