分析 根據(jù)題目給出的定義可得f′(x1)=f′(x2)=$\frac{f(a)-f(0)}{a}$=a2-a,即方程3x2-2x=a2-a在區(qū)間(0,a)有兩個解,利用二次函數(shù)的性質(zhì)可知實數(shù)a的取值范圍.
解答 解:由題意可知,∵f(x)=x3-x2+a,f′(x)=3x2-2x
在區(qū)間[0,a]存在x1,x2(a<x1<x2<b),
滿足f′(x1)=f′(x2)=$\frac{f(a)-f(0)}{a}$=a2-a,
∵f(x)=x3-x2+a,
∴f′(x)=3x2-2x,
∴方程3x2-2x=a2-a在區(qū)間(0,a)有兩個不相等的解.令g(x)=3x2-2x-a2+a,(0<x<a)
則$\left\{\begin{array}{l}{△=4-12(-{a}^{2}+a)>0}\\{g(0)=-{a}^{2}+a>0}\\{g(a)=2{a}^{2}-a>0}\end{array}\right.$,
解得$\frac{1}{2}$<a<1;.
∴實數(shù)a的取值范圍是($\frac{1}{2}$,1)
故答案為:($\frac{1}{2}$,1).
點評 本題主要考查了導(dǎo)數(shù)的幾何意義,二次函數(shù)的性質(zhì)與方程根的關(guān)系,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | 8或9 | D. | 9或10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com