3.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,且滿足Sn=an+1+1,則a7=64.

分析 利用遞推式與等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵Sn=an+1+1,
∴當(dāng)n=1時(shí),a1=a2+1,解得a2=2,
當(dāng)n≥2時(shí),Sn-1=an+1,an=an+1-an,
化為an+1=2an
∵$\frac{{a}_{2}}{{a}_{1}}=\frac{2}{3}≠2$,
∴數(shù)列{an}是從第二項(xiàng)開始的等比數(shù)列,首項(xiàng)為2,公比為2,
∴${a}_{n}=2×{2}^{n-2}$=2n-1
∴an=$\left\{\begin{array}{l}{3,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.
∴a7=26=64.
故答案為:64.

點(diǎn)評 本題考查了遞推式與等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.函數(shù)y=asinx-bcosx(ab≠0)的圖象的一條對稱軸為$x=\frac{π}{4}$,則以$\overrightarrow a=(a,b)$為方向向量的直線的傾斜角為$\frac{3}{4}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.等差數(shù)列{an}中,已知d=3,且a1+a3+a5+…+a99=80,求前100項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=(1-ax)ln(x+1)-bx,其中a和b是實(shí)數(shù),曲線y=f(x)恒與x軸相切于坐標(biāo)原點(diǎn)
(1)求常數(shù)b的值
(2)當(dāng)0≤x≤1時(shí),關(guān)于x的不等式f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍
(3)求證:對于任意的正整數(shù)n,不等式(1+$\frac{1}{n}$)n$<e<(1+\frac{1}{n})^{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(cos40°,sin40°),$\overrightarrow$=(cos80°,-sin80°),則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.1B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)$f(x)={x^2}+{x^{\frac{2}{3}}}$-4的零點(diǎn)m∈(a,a+1),a為整數(shù),則所以滿足條件a的值為a=1或a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,一條東西走向的大江,其河岸A處有人要渡江到對岸B處,江面上有一座大橋AC,已知B在A的西南方向,C在A的南偏西15°,BC=10公里.現(xiàn)有兩種渡江方案:
方案一:開車從大橋AC渡江到C處,然后再到B處;
方案二:直接坐船從A處渡江到對岸B處.
若車速為每小時(shí)60公里,船速為每小時(shí)45公里(不考慮水流速度),為了盡快到達(dá)B處,應(yīng)選擇哪個(gè)方案?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)$A({\frac{1}{4},1}),若M({x,y})$滿足不等式組$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}\right.,則\overrightarrow{OM}•\overrightarrow{OA}$的最小值是$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,輸出的S為(  )
A.-240B.-210C.190D.231

查看答案和解析>>

同步練習(xí)冊答案