【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

【答案】見解析; .

【解析】試題分析:本題考查線面平行、線線平行、向量法等基礎(chǔ)知識(shí),考查空間想象能力、分析問題的能力、計(jì)算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.

試題解析:()在梯形ABCD中,ABCD不平行.

延長(zhǎng)AB,DC,相交于點(diǎn)MM∈平面PAB),點(diǎn)M即為所求的一個(gè)點(diǎn).理由如下:

由已知,BC∥ED,且BC=ED.

所以四邊形BCDE是平行四邊形.

從而CM∥EB.

EB平面PBE,CM平面PBE,

所以CM∥平面PBE.

(說明:延長(zhǎng)AP至點(diǎn)N,使得AP=PN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))

)方法一:

由已知,CD⊥PA,CD⊥AD,PAAD=A,

所以CD⊥平面PAD.

從而CD⊥PD.

所以PDA是二面角P-CD-A的平面角.

所以PDA=45°.

設(shè)BC=1,則在Rt△PAD中,PA=AD=2.

過點(diǎn)AAH⊥CE,交CE的延長(zhǎng)線于點(diǎn)H,連接PH.

易知PA⊥平面ABCD,

從而PA⊥CE.

于是CE⊥平面PAH.

所以平面PCE⊥平面PAH.

AAQ⊥PHQ,則AQ⊥平面PCE.

所以APHPA與平面PCE所成的角.

Rt△AEH中,AEH=45°,AE=1

所以AH=.

Rt△PAH中,PH==

所以sinAPH==.

方法二:

由已知,CD⊥PACD⊥AD,PAAD=A,

所以CD⊥平面PAD.

于是CD⊥PD.

從而PDA是二面角P-CD-A的平面角.

所以PDA=45°.

PA⊥AB,可得PA⊥平面ABCD.

設(shè)BC=1,則在Rt△PAD中,PA=AD=2.

Ay⊥AD,以A為原點(diǎn),以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A-xyz,則A0,0,0),P0,0,2),C(2,1,0),E(1,0,0),

所以=1,0,-2),=1,1,0),=0,0,2

設(shè)平面PCE的法向量為n=(x,y,z),

設(shè)x=2,解得n=(2,-2,1).

設(shè)直線PA與平面PCE所成角為α,則sinα==.

所以直線PA與平面PCE所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市在2018年元旦舉辦了一次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)箱里放有3個(gè)紅球,3個(gè)黃球和1個(gè)藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機(jī)一次性取3個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱.活動(dòng)另附說明如下:

①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎(jiǎng)機(jī)會(huì);

②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會(huì);

③若取得的3個(gè)小球只有1種顏色,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;

④若取得的3個(gè)小球有3種顏色,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;

⑤若取得的3個(gè)小球只有2種顏色,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.

抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購物消費(fèi)數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.

(1)求這20位顧客中獎(jiǎng)得抽獎(jiǎng)機(jī)會(huì)的顧客的購物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);

(2)記一次抽獎(jiǎng)獲得的紅包獎(jiǎng)金數(shù)(單位:元)為,求的分布列及數(shù)學(xué)期望,并計(jì)算這20位顧客(假定每位獲得抽獎(jiǎng)機(jī)會(huì)的顧客都會(huì)去抽獎(jiǎng))在抽獎(jiǎng)中獲得紅包的總獎(jiǎng)金數(shù)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象上相鄰的兩個(gè)最值點(diǎn)為

1)求的解析式;

2)求函數(shù)的單調(diào)遞增區(qū)間;

3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極值;

(2)當(dāng)時(shí),若直線 與曲線沒有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于下列命題:

①若是第一象限角,且,則;

②函數(shù)是偶函數(shù);

③函數(shù)的一個(gè)對(duì)稱中心是;

④函數(shù)上是增函數(shù),

所有正確命題的序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;

(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn)。

(Ⅰ)寫出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .

(1)求橢圓的離心率;

(2)已知的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2010年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示。

1)求第34、5組的頻率;

2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第34、5組每組各抽取多少學(xué)生進(jìn)入第二輪面試?

3)在(2)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案