【題目】已知函數(shù)f(x)=4sinxcos(x)+1.
(1)求f()的值;
(2)求f(x)的最小正周期;
(3)已知 ,且,求cos(2α)的值.
【答案】(1).(2)(3)
【解析】
(1)對函數(shù)進行化簡得f(x)=2sin(2x),即可求解;
(2)結(jié)合(1)即可求得最小正周期;
(3)由題求出sin(2α,利用和差公式求解.
(1)∵由三角函數(shù)公式化簡可得:f(x)=4sinxcos(x)+1=4sinx( cosxsinx)+1=2sinxcosx﹣2sin2x+1
sin2x+cos2x=2sin(2x),
∴f()=2sin.
(2)f(x)的最小正周期Tπ;
(3)∵,且,
∴2sin(2α,可得sin(2α,
∵2α∈[,],
∴cos(2α,
∴cos(2α)=cos(2α)=cos(2α)cossin(2α)sin
.
科目:高中數(shù)學 來源: 題型:
【題目】是個循環(huán)小數(shù),表示的小數(shù)點后第位開始,連續(xù)位上的數(shù)字之積.證明存在自然數(shù)、,對任意的、,均有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個方格表.試求最小的正整數(shù),使得可以在方格表中畫出個矩形(其邊在網(wǎng)格線上),且方格表中的每個小方格的邊均包含在上述個矩形之一的邊上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:==,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.
方案一:每滿100元減20元;
方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽。,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個數(shù) | 3 | 2 | 1 | 0 |
實際付款 | 7折 | 8折 | 9折 | 原價 |
(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;
(2)若某顧客購物金額為180元,選擇哪種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】1998年,某地在抗洪搶險中接到預報,24小時后有一個超歷史最高水位的洪峰到達,為保萬無一失,指揮部決定在24小時內(nèi)筑起一道堤壩作為第二防線.經(jīng)計算,其工程量除動用現(xiàn)有軍民連續(xù)奮戰(zhàn)外,還需要20臺大型翻斗車同時作業(yè)24小時.但是,除了第一輛車可以立即調(diào)入工作外,其余車輛需從各單位緊急抽調(diào),每隔20分鐘有一輛車到達投入作業(yè),已知指揮部最多能組織到25輛車.問24小時內(nèi)能否完成第二防線工程?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,隨著“一帶一路”倡議的推進,中國與沿線國家旅游合作越來越密切,中國到“一帶一路”沿線國家的游客人也越來越多,如圖是2013-2018年中國到“一帶一路”沿線國家的游客人次情況,則下列說法正確的是( )
①2013-2018年中國到“一帶一路”沿線國家的游客人次逐年增加
②2013-2018年這6年中,2016年中國到“一帶一路”沿線國家的游客人次增幅最小
③2016-2018年這3年中,中國到“一帶一路”沿線國家的游客人次每年的增幅基本持平
A.①③B.②③C.①②D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)當時,寫出函數(shù)的單調(diào)區(qū)間;(直接寫出答案,不必寫出證明過程)
(2)當時,求函數(shù)的零點;
(3)當時,求函數(shù)在上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com