已知函數(shù)在點(1,f(1))處的切線方程為y = 2.
(I)求f(x)的解析式;
(II)設(shè)函數(shù)若對任意的,總存唯一實數(shù),使得,求實數(shù)a的取值范圍.

(I) (II)

解析試題分析:(Ⅰ)                     ……2分
在點處的切線方程為,得
,解得.故                       ……4分
(Ⅱ)由(Ⅰ)知,故上單調(diào)遞增,在上單調(diào)遞減,由 ,故的值域為                  ……6分
依題意,記
(。┊(dāng)時,上單調(diào)遞減,依題意由,故此時                      ……8分
(ⅱ)當(dāng)時,>>當(dāng)時,<,當(dāng)時,>.依題意得:
 或 解得                        ……10分
(ⅲ)當(dāng)4時,,此時>單調(diào)遞增.依題意得
 即此不等式組無解                               ……11分
綜上,所求取值范圍為                                 ……12分.
考點:本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)和參數(shù)范圍的求解.
點評:導(dǎo)數(shù)是研究函數(shù)性質(zhì)的有力工具,研究函數(shù)時,首先要看函數(shù)的定義域,求單調(diào)區(qū)間、極值、最值時,往往離不開分類討論,主要考查學(xué)生的分類討論思想的應(yīng)用和運算求解能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若時,取得極值,求實數(shù)的值;   
(2)求上的最小值;
(3)若對任意,直線都不是曲線的切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x|x-2|.
(1)寫出f(x)的單調(diào)區(qū)間;     (2)解不等式f(x)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù)是減函數(shù),且是奇函數(shù),若,求實數(shù)的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)如果當(dāng)時,恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)生物體死亡后,它機體內(nèi)原有的碳14會按確定的規(guī)律衰減,大約每經(jīng)過5730年衰減為原來的一半,這個時間稱為“半衰期”.
(Ⅰ)設(shè)生物體死亡時體內(nèi)每克組織中的碳14的含量為1,根據(jù)上述規(guī)律,寫出生物體內(nèi)碳14的含量與死亡年數(shù)之間的函數(shù)關(guān)系式;
(Ⅱ)湖南長沙馬王堆漢墓女尸出土?xí)r碳14的殘余量約占原始含量的76.7℅,試推算馬王堆漢墓的年代.(精確到個位;輔助數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)畫出函數(shù)的圖象,寫出函數(shù)的單調(diào)區(qū)間;
(2)解關(guān)于的不等式

查看答案和解析>>

同步練習(xí)冊答案