已知數(shù)列的前n項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,數(shù)列的前n項(xiàng)和為,若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)利用,再求得通項(xiàng)公式.(Ⅱ)先求得,再變形得,設(shè),,進(jìn)而求得t的取值范圍是
試題解析:(Ⅰ)當(dāng)時(shí),,解得;
當(dāng)時(shí),,
,故數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,

(Ⅱ)由(Ⅰ)得,,

,則
兩式相減得,
,故,      
又由(Ⅰ)得,,
不等式即為,
即為對(duì)任意恒成立.設(shè),則,
,∴,故實(shí)數(shù)t的取值范圍是
考點(diǎn):1.等差數(shù)列的性質(zhì);  2.不等式恒成立問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0,且成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,公差,且,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1公比為3 的等比數(shù)列,求數(shù)列項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,.的前n項(xiàng)和為.
(Ⅰ)求 及;
(Ⅱ)若 ,),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,,成等差數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無窮數(shù)列滿足
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:,
(Ⅰ) 求證:數(shù)列是等差數(shù)列并求的通項(xiàng)公式;
(Ⅱ) 設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)都不相等的等差數(shù)列的前六項(xiàng)和為60,且 的等比中項(xiàng).
(I)求數(shù)列的通項(xiàng)公式
(II)若數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知{}是等差數(shù)列,其前項(xiàng)和為,{}是等比數(shù)列,且=,,.
(1)求數(shù)列{}與{}的通項(xiàng)公式;
(2)記,求滿足不等式的最小正整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案