已知{}是等差數(shù)列,其前項(xiàng)和為,{}是等比數(shù)列,且=,.
(1)求數(shù)列{}與{}的通項(xiàng)公式;
(2)記,求滿(mǎn)足不等式的最小正整數(shù)的值.

(1)(2)8

解析試題分析:(1)設(shè)數(shù)列的公差為,數(shù)列的公比為;

得:            6分
(2)
兩式相減得,的最小n值為8.          6分
考點(diǎn):等差數(shù)列等比數(shù)列通項(xiàng)及數(shù)列求和
點(diǎn)評(píng):求等差數(shù)列等比數(shù)列通項(xiàng)時(shí),只需將條件轉(zhuǎn)化為數(shù)列的首項(xiàng)和公差公比,進(jìn)而解方程即可;第二問(wèn)為數(shù)列求和,觀察其特點(diǎn)采用錯(cuò)位相減法,此法在求和的題目中是常考的方法

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,數(shù)列的前n項(xiàng)和為,若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是等差數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令求數(shù)列前n項(xiàng)和的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知等差數(shù)列,求的公差;
(2)有三個(gè)數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求該數(shù)列的公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知公差大于零的等差數(shù)列的前n項(xiàng)和為,且滿(mǎn)足:,
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)c;
(3)在(2)的條件下,設(shè),已知數(shù)列為遞增數(shù)列,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿(mǎn)足:的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令bn=(nN*),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的公差,等比數(shù)列為公比為,且,,.
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列,是否存在正整數(shù)(其中)使得都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等差數(shù)列,且
(1)求數(shù)列的第二項(xiàng);
(2)若成等比數(shù)列,求數(shù)列的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿(mǎn)足:,,的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令 bn= (nN*),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案