精英家教網 > 高中數學 > 題目詳情
已知函數
(1)求函數f(x)的最小值和最小正周期;
(2)設△ABC的內角A、B、C、的對邊分別為a、b、c,且c=,f(C)=0,若向量與向量共線,求a,b.
【答案】分析:(1)利用三角函數的二倍角公式化簡f(x),根據三角函數的有界性求出最小值,根據三角函數的周期公式求出f(x)周期.
(2)利用f(C)=0求出角C,利用余弦定理得到邊a,b,c的關系;利用向量共線的充要條件得到三角函數的等量關系,利用正弦定理得到邊a,b,c的另一個等式,解方程組求出a,b的長.
解答:解:(1)
f(x)的最小正周期為π
(2)由c=,f(C)=0,得
由向量與向量共線,
得sinB=2sinA,
∴b=2a
解方程組
得a=1,b=2
點評:解決三角函數的性質問題,一般先利用三角函數的公式化簡三角函數為y=Asin(ωx+φ)+k形式,然后再求函數的性質;解決三角形有關的問題,一般利用正弦定理、余弦定理進行解決.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側的第一個最大值、最小值點分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數y=f(x)的解析式及x0;
(2)求函數y=f(x)的單調遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點的橫坐標縮短到原來的
1
3
(縱坐標不變),然后再將所得圖象沿x軸負方向平移
π
3
個單位,最后將y=f(x)圖象上所有點的縱坐標縮短到原來的
1
2
(橫坐標不變)得到函數y=g(x)的圖象,寫出函數y=g(x)的解析式并給出y=|g(x)|的對稱軸方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
時取得最大值4.
(1)求函數f(x)的最小正周期及解析式;
(2)求函數f(x)的單調增區(qū)間;
(3)求函數f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數 (1)求函數在區(qū)間[1,]上的最大值、最小值;

(2)求證:在區(qū)間(1,)上,函數圖象在函數圖象的下方;

(3)設函數,求證:。(

查看答案和解析>>

科目:高中數學 來源:2008-2009學年湖北省仙桃一中高三(上)第二次段考數學試卷(理科)(解析版) 題型:解答題

已知函數
(1)求函數f(x)的最小正周期和最小值;
(2)在給出的直角坐標系中,用描點法畫出函數y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省棗莊市高三上學期期末檢測理科數學 題型:解答題

(本題滿分12分)

已知函數

(1)求函數的極值點;

(2)若直線過點(0,—1),并且與曲線相切,求直線的方程;

(3)設函數,其中,求函數上的最小值.(其中e為自然對數的底數)

 

 

查看答案和解析>>

同步練習冊答案