(1)方法一 對函數(shù)f(x)求導(dǎo),f′(x)=
·
.
令f′(x)=0,得x=1或x=-1.
當(dāng)x∈(0,1)時,f′(x)>0,f(x)在(0,1)上單調(diào)遞增;
當(dāng)x∈(1,2)時,f′(x)<0,f(x)在(1,2)上單調(diào)遞減.又f(0)=0,f(1)=
,f(2)=
,
∴當(dāng)x∈[0,2]時,f(x)的值域是
.
方法二 當(dāng)x=0時,f(x)=0;
當(dāng)x∈(0,2]時,f(x)>0且
f(x)=
·
≤
·
=
,
當(dāng)且僅當(dāng)x=
,即x=1時,“=”成立.
∴當(dāng)x∈[0,2]時,f(x)的值域是
.
(2)設(shè)函數(shù)g(x)在[0,2]上的值域是A.
∵對任意x
1∈[0,2],總存在x
0∈[0,2],
使f(x
1)-g(x
0)=0,∴
A.
對函數(shù)g(x)求導(dǎo),g′(x)=ax
2-a
2.
①當(dāng)x∈(0,2),a<0時,g′(x)<0,
∴函數(shù)g(x)在(0,2)上單調(diào)遞減.
∵g(0)=0,g(2)=
a-2a
2<0,
∴當(dāng)x∈[0,2]時,不滿足
A;
②當(dāng)a>0時,g′(x)=a(x-
)(x+
).
令g′(x)=0,得x=
或x=-
(舍去).
(ⅰ)當(dāng)x∈[0,2],0<
<2時,列表:
∵g(0)=0,g(
)<0,
又∵
A,∴g(2)=
≥
.
解得
≤a≤1.
(ⅱ)當(dāng)x∈(0,2),
≥2時,g′(x)<0,
∴函數(shù)在(0,2)上單調(diào)遞減,
∵g(0)=0,g(2)=
<0,
∴當(dāng)x∈[0,2]時,不滿足
A.
綜上,實數(shù)a的取值范圍是
.