精英家教網 > 高中數學 > 題目詳情

(本題滿分16分)

2010年上海世博會某國要建一座八邊形(不一定為正八邊形)的展館區(qū)(如圖),它的主體造型的平面圖是由二個相同的矩形構成的面積為m2的十字型地域,計劃在正方形上建一座“觀景花壇”,造價為元/m2,在四個矩形上(圖中陰影部分)鋪花崗巖地坪,造價為元/m2,再在四個空角(如等)上鋪草坪,造價為元/m2. 設總造價為元,長為m.

(1)用表示矩形的邊的長

(1)試建立的函數關系

(2)當為何值時,最?并求這個最小值

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

米時,有最小值為

【解析】1)由得:

       

        .                            ……………………..3分

   (2)

       

       

       

       

                              ……………………..7分

       

             

             

        .…..11分

   (3)   ………..13分

        當且僅當,即時, . ………..15分

        所以當米時,有最小值為元.          ……………………..16分

 

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題滿分16分)兩個數列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數列的充要條件是{an}為等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.

已知函數、是常數,且),對定義域內任意、),恒有成立.

(1)求函數的解析式,并寫出函數的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分16分)已知數列的前項和為,且.數列中,,

 .(1)求數列的通項公式;(2)若存在常數使數列是等比數列,求數列的通項公式;(3)求證:①;②

查看答案和解析>>

科目:高中數學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題

本題滿分16分)已知圓內接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數學卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數

(1)判斷并證明上的單調性;

(2)若存在,使,則稱為函數的不動點,現已知該函數有且僅有一個不動點,求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習冊答案