一個母線長為2的圓錐側(cè)面展開圖為一個半圓則此圓錐的體積為
 
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:空間位置關(guān)系與距離
分析:半徑為2的半圓的弧長是2π,圓錐的底面周長等于側(cè)面展開圖的扇形弧長,因而圓錐的底面周長是2π,利用弧長公式計算底面半徑后利用勾股定理求圓錐的高即可求解圓錐的體積.
解答: 解:一個圓錐的母線長為2,它的側(cè)面展開圖為半圓,
圓的弧長為:2π,即圓錐的底面周長為:2π,
設(shè)圓錐的底面半徑是r,
則得到2πr=2π,
解得:r=1,
這個圓錐的底面半徑是1,
∴圓錐的高為
22-12
=
3

所以圓錐的體積為:
1
3
πr2h=
3
π
3
,
故答案為:
3
π
3
點評:本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-
3
2
x2+1(x∈R),其中a>0
(Ⅰ)若曲線y=f(x)在區(qū)間(1,2)單調(diào)遞減,求實數(shù)a的取值范圍
(Ⅱ)若在區(qū)間[-
1
2
,
1
2
]上,f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
(1-a2)x2+3(1-a)x+6
的定義域為[-2,1],則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)cos(α+
π
6
)=
3
5
,α為銳角,則sin(2α+
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域為R.對于正數(shù)K,定義“Ψ”函數(shù)fΨ(x)=
f(x),f(x)≤K
K,f(x)>K
,若f(x)=2-x-e-x,恒有fΨ(x)=f(x),則K的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(a-1)x+2的圖象關(guān)于x=1對稱,則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|log3x|(0<x≤3)
1
8
x2-
3
2
x+
35
8
(x>3)
,若函數(shù)h(x)=f(x)-m有四個不同的零點a,b,c,d,則:
(1)實數(shù)m的取值范圍為
 
;
(2)abcd的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若空間向量
a
,
b
c
滿足|
a
|=1,|
b
|=2,|
c
|=3,
a
b
+
b
c
+
c
a
=0,則|
a
+
b
+
c
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐S-ABCD中,SA=3,那么當(dāng)該棱錐的體積最大時,它的高為
 

查看答案和解析>>

同步練習(xí)冊答案