已知拋物線y2=2px(p>0),過(guò)定點(diǎn)T(p,0)作兩條互相垂直的直線l1,l2,若l1與拋物線交與P、Q,若l2與拋物線交與M、N,l1的斜率為k.某同學(xué)正確地已求出了弦PQ的中點(diǎn)為,請(qǐng)寫(xiě)出弦MN的中點(diǎn)   
【答案】分析:由題意寫(xiě)出直線的方程,聯(lián)立消元,利用根系關(guān)系解出兩根之和,再利用中點(diǎn)坐標(biāo)公式解出弦MN中點(diǎn)的坐標(biāo).
解答:解:由已知l1的斜率為k,互相垂直的直線l1,l2,
設(shè)直線l2:y=-(x-p),代入y2=2px,消去y得x2-2(p+pk2)x+p2=0.
設(shè)M(x1,y1),N(x2,y2),
由根系關(guān)系x1+x2=2(p+pk2),y1+y2═-(x1-p)-(x2-p)=-2pk,
則MN的中點(diǎn)坐標(biāo)為(pk2+p,-pk).
故應(yīng)填(pk2+p,-pk).
點(diǎn)評(píng):考查兩直線垂直的條件,直線與圓錐曲線位置關(guān)系,一元二次方程的根系關(guān)系.此類(lèi)題是直線與圓錐曲線的位置關(guān)系中一類(lèi)常見(jiàn)的題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l.
(1)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過(guò)點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過(guò)點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點(diǎn).求證:直線AB經(jīng)過(guò)點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案