某通訊公司需要在三角形地帶區(qū)域內(nèi)建造甲、乙兩種通信信號(hào)加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域內(nèi),乙中轉(zhuǎn)站建在區(qū)域內(nèi).分界線固定,且=百米,邊界線始終過點(diǎn),邊界線滿足
設(shè)()百米,百米.

(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時(shí)?整個(gè)中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.
(1);(2):當(dāng)米時(shí),整個(gè)中轉(zhuǎn)站的占地面積最小,最小面積是平方米.

試題分析:(1)要求函數(shù)關(guān)系式,實(shí)際上是建立起之間的等量關(guān)系,分析圖形及已知條件,我們可借助于三角形有面積,,從這個(gè)等式中,解出,即得要求的函數(shù)式;(2)有了(1)中的關(guān)系式,就可表示為一個(gè)字母的式子,它是一個(gè)分式函數(shù),由于分母是一次,而分子是二次的,故可這樣變形,正好這個(gè)表達(dá)式可以用基本不等式來求得最小值.
試題解析:(1)結(jié)合圖形可知,
于是,,
解得
(2)由(1)知,,
因此,

(當(dāng)且僅當(dāng),即時(shí),等號(hào)成立).
答:當(dāng)米時(shí),整個(gè)中轉(zhuǎn)站的占地面積最小,最小面積是平方米.12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了凈化空氣,某科研單位根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每噴灑1個(gè)單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間(單位:天)變化的函數(shù)關(guān)系式近似為若多次噴灑,則某一時(shí)刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化空氣的作用.
(1)若一次噴灑4個(gè)單位的凈化劑,則凈化時(shí)間可達(dá)幾天?
(2)若第一次噴灑2個(gè)單位的凈化劑,6天后再噴灑a)個(gè)單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求的最小值(精確到0.1,參考數(shù)據(jù):取1.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

據(jù)市場(chǎng)分析,廣饒縣馳中集團(tuán)某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬元.
(1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;
(2)已知該產(chǎn)品銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn);
(3)當(dāng)月產(chǎn)量為多少噸時(shí), 每噸平均成本最低,最低成本是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某機(jī)場(chǎng)建在一個(gè)海灣的半島上,飛機(jī)跑道AB的長(zhǎng)為4.5km,且跑道所在的直線與海岸線l的夾角為60o(海岸線可以看作是直線),跑道上離海岸線距離最近的點(diǎn)B到海岸線的距離BC=4km.D為海灣一側(cè)海岸線CT上的一點(diǎn),設(shè)CD=x(km),點(diǎn)D對(duì)跑道AB的視角為q.
(1)將tanq表示為x的函數(shù);
(2)求點(diǎn)D的位置,使q取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),若為某一個(gè)三角形的邊長(zhǎng),則實(shí)數(shù)m的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的最大值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在實(shí)數(shù)集上的函數(shù),如果存在函數(shù)為常數(shù)),使得對(duì)一切實(shí)數(shù)都成立,那么稱為函數(shù)的一個(gè)承托函數(shù).給出如下四個(gè)結(jié)論:
①對(duì)于給定的函數(shù),其承托函數(shù)可能不存在,也可能有無數(shù)個(gè);
②定義域和值域都是的函數(shù)不存在承托函數(shù);
為函數(shù)的一個(gè)承托函數(shù);
為函數(shù)的一個(gè)承托函數(shù).
其中所有正確結(jié)論的序號(hào)是____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

A,B兩架直升機(jī)同時(shí)從機(jī)場(chǎng)出發(fā),完成某項(xiàng)救災(zāi)物資空投任務(wù).A機(jī)到達(dá)甲地完成任務(wù)后原路返回;B機(jī)路過甲地,前往乙地完成任務(wù)后原路返回.圖中折線分別表示A,B兩架直升機(jī)離甲地的距離s與時(shí)間t之間的函數(shù)關(guān)系. 假設(shè)執(zhí)行任務(wù)過程中A,B均勻速直線飛行,則B機(jī)每小時(shí)比A機(jī)多飛行      公里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某森林出現(xiàn)火災(zāi),火勢(shì)正以100m2/分鐘的速度順風(fēng)蔓延,消防站接到報(bào)警立即派消防隊(duì)員前去,在火災(zāi)發(fā)生后5分鐘到達(dá)救火現(xiàn)場(chǎng),已知消防隊(duì)員在現(xiàn)場(chǎng)平均每人滅火50m2/分鐘,所消耗的滅火材料,勞務(wù)津貼等費(fèi)用為人均125元/分鐘,另附加每次救火所耗損的車輛、器械和裝備等費(fèi)用人均100元,而燒毀森林的損失費(fèi)60元/m2,應(yīng)該派多少消防隊(duì)員前去救火才能使總損失最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案