(14分)已知橢圓的中心為坐標(biāo)原點(diǎn),短軸長(zhǎng)為2,一條準(zhǔn)線(xiàn)方程為l

       ⑴ 求橢圓的標(biāo)準(zhǔn)方程;

⑵ 設(shè)O為坐標(biāo)原點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)M是直線(xiàn)l上的動(dòng)點(diǎn),過(guò)點(diǎn)FOM的垂線(xiàn)與以OM為直徑的圓交于點(diǎn)N,求證:線(xiàn)段ON的長(zhǎng)為定值.

 解析:⑴∵橢圓C的短軸長(zhǎng)為2,橢圓C的一條準(zhǔn)線(xiàn)為l,

       ∴不妨設(shè)橢圓C的方程為2分)

        ∴ 4分)      即(5分)

        ∴橢圓C的方程為6分)

    ⑵ F(1,0),右準(zhǔn)線(xiàn)為l, 設(shè),

     則直線(xiàn)FN的斜率為,直線(xiàn)ON的斜率為,8分)

     ∵FNOM,∴直線(xiàn)OM的斜率為,9分)

    ∴直線(xiàn)OM的方程為:,點(diǎn)M的坐標(biāo)為11分)

    ∴直線(xiàn)MN的斜率為12分)

    ∵MNON,∴,

    ∴,

    ∴,即13分)

    ∴為定值.14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過(guò)橢圓右焦點(diǎn)F的直線(xiàn)交橢圓于A、B兩點(diǎn),
OA
+
OB
a
=(3,-1)共線(xiàn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)M為橢圓上任意一點(diǎn),且
OM
OA
OB
(λ,μ∈R)
,證明λ22為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)M(2,t)(t>0)在直線(xiàn)x=
a2c
(a為長(zhǎng)半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以O(shè)M為直徑且被直線(xiàn)3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線(xiàn)與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線(xiàn)段ON的長(zhǎng)為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn),斜率為1且過(guò)橢圓右焦點(diǎn)F(2,0)的直線(xiàn)交橢圓于A,B兩點(diǎn),
OA
+
OB
a
=(3,-1)
共線(xiàn),則該橢圓的長(zhǎng)半軸長(zhǎng)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)M(2,t)(t>0)在直線(xiàn)x=
a2c
(a為長(zhǎng)半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且被直線(xiàn)3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過(guò)橢圓右焦點(diǎn)F的直線(xiàn)交橢圓于A、B兩點(diǎn),
OA
+
OB
a
=(3,-1)
共線(xiàn),則該橢圓的離心率為( 。
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案