下列命題錯(cuò)誤的是( )
A.命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆否命題為:“若方程x2+x-m=0無實(shí)根,則m≤0”
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.命題“若xy=0則x,y中至少有一個(gè)為零”的否定是“若xy≠0,則x,y都不為零”
D.對于命題p:?x∈R,使得x2+x+1<0;則¬p是:?x∈R,均有x2+x+1≥0
【答案】分析:本題考查的知識點(diǎn)是:四種命題和命題的否定和充要條件,根據(jù)四種命題、充要條件及命題否定的概念對四個(gè)答案逐一進(jìn)行判斷,不難得到正確的結(jié)論.
解答:解:由逆否命題的定義,可以得到命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆否命題為:“若方程x2+x-m=0無實(shí)根,則m≤0”故A正確;
當(dāng)x=1時(shí),x2-3x+2=0成立,但x2-3x+2=0時(shí),x=1或x=2,故“x=1”是“x2-3x+2=0”的充分不必要條件,故B正確;
命題“若xy=0則x,y中至少有一個(gè)為零”的否定是:“若xy=0,則x,y都不為零”故C錯(cuò)誤
命題“?x∈R,使得x2+x+1<0”的否定是:?x∈R,均有x2+x+1≥0故D正確
故選C
點(diǎn)評:判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.