圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn).AC,BD交于O點(diǎn).

(1)二面角Q-BD-C的大。

(2)求二面角B-QD-C的大。

 

【答案】

(1)(2)

【解析】

試題分析:連QO,則QO∥PA且QO=PA=AB

∵ PA⊥面ABCD

∴ QO⊥面ABCD

面QBD過(guò)QO,

∴ 面QBD⊥面ABCD

故二面角Q-BD-C等于90°.

(Ⅱ)解:過(guò)O作OH⊥QD,垂足為H,連CH.

∵ 面QBD⊥面BCD,

又∵ CO⊥BD

CO⊥面QBD

CH在面QBD內(nèi)的射影是OH

∵ OH⊥QD

∴ CH⊥QD

于是∠OHC是二面角的平面角.

設(shè)正方形ABCD邊長(zhǎng)2,

則OQ=1,OD=,QD=

∵ OH·QD=OQ·OD

∴ OH=

又OC=

在Rt△COH中:tan∠OHC=·

∴ ∠OHC=60°

故二面角B-QD-C等于60°.

考點(diǎn):二面角求解

點(diǎn)評(píng):本題還可用空間向量的方法求二面角

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:湖北省荊州中學(xué)2008高考復(fù)習(xí)立體幾何基礎(chǔ)題題庫(kù)一(有詳細(xì)答案)人教版 人教版 題型:044

在立體圖形PABCD中,底面ABCD是正方形,PA⊥底面ABCD,PAABQPC中點(diǎn).AC,BD交于O點(diǎn).

()求二面角QBDC的大。

()求二面角BQDC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在立體圖形PABCD中,底面ABCD是正方形,PA⊥底面ABCD,PAAB,QPC中點(diǎn).

AC,BD交于O點(diǎn).

(Ⅰ)求二面角QBDC的大。

(Ⅱ)求二面角BQDC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高二第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn).AC,BD交于O點(diǎn).

(1)二面角Q-BD-C的大小:

(2求二面角B-QD-C的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省高二上學(xué)期第一次月考文科數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

在立體圖形P-ABCD中,底面ABCD是一個(gè)直角梯形,∠BAD=90°,AD∥BC,

AB=BC=a,AD=PA=2a,E是邊的中點(diǎn),且PA⊥底面ABCD。

(1)求證:BE⊥PD

(2)求證:

(3)求異面直線AE與CD所成的角.

                         

 

查看答案和解析>>

同步練習(xí)冊(cè)答案