設(shè)函數(shù)f(x)=
a
x
+xlnx
,g(x)=x3-x2-3.
(Ⅰ)討論函數(shù)h(x)=
f(x)
x
的單調(diào)性;
(Ⅱ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(Ⅲ)如果對任意的s,t∈[
1
2
,2]
,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.
(Ⅰ)h(x)=
a
x2
+lnx
,h′(x)=-
2a
x3
+
1
x
=
x2-2a
x3
,…(1分)
①a≤0,h'(x)≥0,函數(shù)h(x)在(0,+∞)上單調(diào)遞增…(2分)
②a>0,h′(x)≥0,x≥
2a
,函數(shù)h(x)的單調(diào)遞增區(qū)間為(
2a
,+∞)
h′(x)≤0,0<x≤
2a
,函數(shù)h(x)的單調(diào)遞減區(qū)間為(0,
2a
)
…(4分)
(Ⅱ)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,等價于:[g(x1)-g(x2)]max≥M,…(5分)
考察g(x)=x3-x2-3,g′(x)=3x(x-
2
3
)
,…(6分)
x 0 (0,
2
3
)
2
3
(
2
3
,2)
2
g′(x) 0 - 0 +
g(x) -3 遞減 極(最)小值-
85
27
遞增 1
…(8分)
由上表可知:g(x)min=g(
2
3
)=-
85
27
,g(x)max=g(2)=1
,
∴[g(x1)-g(x2)]max=g(x)max-g(x)min=
112
27
,…(9分)
所以滿足條件的最大整數(shù)M=4;…(10分)
(Ⅲ)當(dāng)x∈[
1
2
,2]
時,f(x)=
a
x
+xlnx≥1
恒成立,等價于a≥x-x2lnx恒成立,…(11分)
記h(x)=x-x2lnx,所以a≥hmax(x)
又h′(x)=1-2xlnx-x,則h′(1)=0.
記h'(x)=(1-x)-2lnx,x∈[
1
2
,1)
,1-x>0,xlnx<0,h'(x)>0
即函數(shù)h(x)=x-x2lnx在區(qū)間[
1
2
,1)
上遞增,
記h'(x)=(1-x)-2lnx,x∈(1,2],1-x<0,xlnx>0,h'(x)<0
即函數(shù)h(x)=x-x2lnx在區(qū)間(1,2]上遞減,
∴x=1,h(x)取到極大值也是最大值h(1)=1…(13分)
∴a≥1…(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過點(1,7),又其反函數(shù)的圖象經(jīng)過點(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊答案