設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn).若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.
解:(1)設(shè)F1(-c,0),F2(c,0)(c>0),
因?yàn)閨PF2|=|F1F2|,
所以=2c,
整理得2()2+-1=0,
得=-1(舍去),或=,
所以e=.
(2)由(1)知a=2c,b=c,
可得橢圓方程為3x2+4y2=12c2,
直線PF2的方程為y=(x-c).
A、B兩點(diǎn)的坐標(biāo)滿足方程組
消去y并整理,得5x2-8cx=0,
解得x1=0,x2=c.
得方程組的解
不妨設(shè)A(c,c),B(0,-c),
所以|AB|==c.
于是|MN|=|AB|=2c.
圓心(-1, )到直線PF2的距離
d==.
因?yàn)閐2+=42,
所以(2+c)2+c2=16.
整理得7c2+12c-52=0,
解得c=-(舍去)或c=2.
所以橢圓方程為+=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
雙曲線的焦點(diǎn)在x軸上,實(shí)軸長(zhǎng)為4,離心率為3,則該雙曲線的標(biāo)準(zhǔn)方程為 ,漸近線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
從橢圓+=1(a>b>0)上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,A是橢圓與x軸正半軸的交點(diǎn),B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP(O是坐標(biāo)原點(diǎn)),則該橢圓的離心率是( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓C: +=1(a>b>0)的離心率e=,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交x軸于點(diǎn)N,直線AD交BP于點(diǎn)M,設(shè)BP的斜率為k,MN的斜率為m.證明2m-k為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
定義:關(guān)于x的不等式|x-A|<B的解集叫A的B鄰域.
已知a+b-2的a+b鄰域?yàn)閰^(qū)間(-2,8),其中a、b分別為橢圓+=1的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng),若此橢圓的一焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,則橢圓的方程為( )
(A) +=1 (B) +=1
(C) +=1 (D) +=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
直線y=x與橢圓C: +=1的交點(diǎn)在x軸上的射影恰好是橢圓的焦點(diǎn),則橢圓C的離心率為( )
(A) (B)
(C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A、B兩點(diǎn),|AB|=4,則C的實(shí)軸長(zhǎng)為( )
(A) (B)2 (C)4 (D)8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某校高一(4)班有男生28人,女生21人,用分層抽樣的方法從全體學(xué)生中抽取一個(gè)調(diào)查小組,調(diào)查該校學(xué)生對(duì)2013年元月1日起執(zhí)行的新交規(guī)的知曉情況,已知某男生被抽中的概率為,則抽取的女生人數(shù)為( )
A.1 B.3 C.4 D.7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com