雙曲線的焦點(diǎn)在x軸上,實(shí)軸長(zhǎng)為4,離心率為3,則該雙曲線的標(biāo)準(zhǔn)方程為 ,漸近線方程為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)a,b,c,d∈(0,+∞),若a+d=b+c且|a-d|<|b-c|,則有( )
(A)ad=bc (B)ad<bc
(C)ad>bc (D)ad≤bc
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線C1: -=1(a>0,b>0)與雙曲線C2: -=1有相同的漸近線,且C1的右焦點(diǎn)為F(,0),則a= ,b= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線-=1的離心率為2,焦點(diǎn)與橢圓+=1的焦點(diǎn)相同,那么雙曲線的焦點(diǎn)坐標(biāo)為 ;漸近線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的離心率為,實(shí)軸長(zhǎng)為4,則雙曲線的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)過(guò)雙曲線x2-y2=9左焦點(diǎn)F1的直線交雙曲線的左支于點(diǎn)P,Q,F2為雙曲線的右焦點(diǎn).若|PQ|=7,則△F2PQ的周長(zhǎng)為( )
(A)19 (B)26 (C)43 (D)50
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(1,0),離心率等于,則C的方程是( )
(A) + =1 (B) +=1
(C) +=1 (D) +=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn).若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,設(shè)P是拋物線C1:x2=y上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓C2:x2+(y+3)2=1的兩條切線,交直線l:y=-3于A、B兩點(diǎn).
(1)求圓C2的圓心M到拋物線C1準(zhǔn)線的距離;
(2)是否存在點(diǎn)P,使線段AB被拋物線C1在點(diǎn)P處的切線平分?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com