【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形的面積為定值,并求此定值.

【答案】1;(2)證明見(jiàn)解析,.

【解析】

1)將點(diǎn)代入切線方程得出,求出函數(shù)的導(dǎo)數(shù),由列出有關(guān)、的方程組,解出,可得出函數(shù)的解析式;

2)設(shè)點(diǎn)為函數(shù)圖象上任意一點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求出函數(shù)在該點(diǎn)處的切線方程,求出切線與軸和直線的交點(diǎn)坐標(biāo),再利用三角形的面積來(lái)證明結(jié)論.

1)將點(diǎn)的坐標(biāo)代入直線的方程得,

,則,直線的斜率為

于是,解得,故;

2)設(shè)點(diǎn)為曲線上任意一點(diǎn),由(1)知

,又,

所以,曲線在點(diǎn)的切線方程為,

,

,得,從而得出切線與軸的交點(diǎn)坐標(biāo)為

聯(lián)立,解得,

從而切線與直線的交點(diǎn)坐標(biāo)為.

所以,曲線在點(diǎn)處的切線與直線、所圍成的三角形的面積為

故曲線上任一點(diǎn)處的切線與直線,所圍成的三角形的面積為定值且此定值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為實(shí)數(shù)).

(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;

(2)求在區(qū)間上的最小值;

(3)若存在兩個(gè)不等實(shí)數(shù),使方程成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=logax+2),gx)=loga2x)(a0,a≠1).

1)求函數(shù)fx)﹣gx)的定義域;

2)判斷fx)﹣gx)的奇偶性并證明;

3)求fx)﹣gx)>0x取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的個(gè)數(shù)①“,”的否定是“”;②用相關(guān)指數(shù)可以刻畫(huà)回歸的擬合效果,值越小說(shuō)明模型的擬合效果越好;③命題“若,則”的逆命題為真命題;④若的解集為,則.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】常州地鐵項(xiàng)目正在緊張建設(shè)中,通車(chē)后將給市民出行帶來(lái)便利.已知某條線路通車(chē)后,地鐵的發(fā)車(chē)時(shí)間間隔 (單位:分鐘)滿足,經(jīng)測(cè)算,地鐵載客量與發(fā)車(chē)時(shí)間間隔相關(guān),當(dāng)時(shí)地鐵為滿載狀態(tài),載客量為1200人,當(dāng)時(shí),載客量會(huì)減少,減少的人數(shù)與的平方成正比,且發(fā)車(chē)時(shí)間間隔為2分鐘時(shí)的載客量為560人,記地鐵載客量為.

⑴ 求的表達(dá)式,并求當(dāng)發(fā)車(chē)時(shí)間間隔為6分鐘時(shí),地鐵的載客量;

⑵ 若該線路每分鐘的凈收益為(元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔為多少時(shí),該線路每分鐘的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2018·江西六校聯(lián)考)ABC中,角A,B,C所對(duì)的邊分別為a,b,c,a=4,b=4,cosA=-.

(1)求角B的大小;

(2)f(x)=cos2x+sin2(x+B),求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線軸分別交于兩點(diǎn).

①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市地鐵全線共有四個(gè)車(chē)站,甲、乙兩人同時(shí)在地鐵第1號(hào)車(chē)站(首發(fā)站)乘車(chē),假設(shè)每人自第2號(hào)站開(kāi)始,在每個(gè)車(chē)站下車(chē)是等可能的,約定用有序?qū)崝?shù)對(duì)表示甲在號(hào)車(chē)站下車(chē),乙在號(hào)車(chē)站下車(chē)

)用有序?qū)崝?shù)對(duì)把甲、乙兩人下車(chē)的所有可能的結(jié)果列舉出來(lái);

)求甲、乙兩人同在第3號(hào)車(chē)站下車(chē)的概率;

)求甲、乙兩人在不同的車(chē)站下車(chē)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案