【題目】下列命題中正確的個(gè)數(shù)①“,”的否定是“,”;②用相關(guān)指數(shù)可以刻畫(huà)回歸的擬合效果,值越小說(shuō)明模型的擬合效果越好;③命題“若,則”的逆命題為真命題;④若的解集為,則.

A. B. C. D.

【答案】C

【解析】

根據(jù)含量詞命題的否定可知①錯(cuò)誤;根據(jù)相關(guān)指數(shù)的特點(diǎn)可知越接近,模型擬合度越低,可知②錯(cuò)誤;根據(jù)四種命題的關(guān)系首先得到逆命題,利用不等式性質(zhì)可知③正確;分別在的情況下,根據(jù)解集為確定不等關(guān)系,從而解得范圍,可知④正確.

①根據(jù)全稱量詞的否定可知“,”的否定是“”,則①錯(cuò)誤;

②相關(guān)指數(shù)越接近,模型擬合度越高,即擬合效果越好;越接近,模型擬合度越低,即擬合效果越差,則②錯(cuò)誤;

③若“,則”的逆命題為:若“若,則”,根據(jù)不等式性質(zhì)可知其為真命題,則③正確;

④當(dāng)時(shí),,此時(shí)解集不為,不合題意;

當(dāng)時(shí),若解集為,只需:

解得:,則④正確.

正確的命題為:③④

本題正確選項(xiàng):

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)的圖象向右平移一個(gè)單位,所得圖象與函數(shù)的圖象關(guān)于直線對(duì)稱;已知偶函數(shù)滿足,當(dāng)時(shí),;若函數(shù)有五個(gè)零點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲(chóng)的6組觀測(cè)數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/個(gè)

6

11

20

27

57

77

經(jīng)計(jì)算得: , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說(shuō)明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量(單位:瓶)為多少時(shí),的數(shù)學(xué)期望達(dá)到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,

(1)求證:;

(2)當(dāng)幾何體的體積等于時(shí),求四棱錐.的側(cè)面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形的面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCD,ABADACCD,∠ABC=60°,PAABBC,EPC的中點(diǎn).證明:

(1)CDAE

(2)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱 中, 平面 ,其垂足 落在直線 上.

(1)求證: ;

(2)若 的中點(diǎn),求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推動(dòng)實(shí)施健康中國(guó)戰(zhàn)略,樹(shù)立國(guó)家大衛(wèi)生、大健康概念,手機(jī)APP也推出了多款健康運(yùn)動(dòng)軟件,如“微信運(yùn)動(dòng)”,楊老師的微信朋友圈內(nèi)有600位好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了40位微信好友(女20人,男20人),統(tǒng)計(jì)其在某一天的走路步數(shù),其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:

5860

8520

7326

6798

7325

8430

3216

7453

11754

9860

8753

6450

7290

4850

10223

9763

7988

9176

6421

5980

男性好友走路的步數(shù)情況可分為五個(gè)類別:(說(shuō)明:“”表示大于等于0,小于等于2000,下同),,,,且,,三種類別人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的條形圖,若某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)認(rèn)定為“衛(wèi)健型”,否則被系統(tǒng)認(rèn)定為“進(jìn)步型”.

若以楊老師選取的好友當(dāng)天行走步數(shù)的頻率分布來(lái)估計(jì)所有微信好友每日走路步數(shù)的概率分布,請(qǐng)估計(jì)楊老師的微信好友圈里參與“微信運(yùn)動(dòng)”的600名好友中,每天走路步數(shù)在5001~10000步的人數(shù);

請(qǐng)根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認(rèn)定“認(rèn)定類型”與“性別”有關(guān)?

衛(wèi)健型

進(jìn)步型

總計(jì)

20

20

總計(jì)

40

若按系統(tǒng)認(rèn)定類型從選取的樣本數(shù)據(jù)中在男性好友中按比例選取10人,再?gòu)闹腥我膺x取3人,記選到“衛(wèi)健型”的人數(shù)為,女性好友中按比例選取5人,再?gòu)闹腥我膺x取2人,記選到“衛(wèi)健型”的人數(shù)為,求事件“”的概率.

附:,

查看答案和解析>>

同步練習(xí)冊(cè)答案