【題目】為得到函數(shù)y=cos(x+ )的圖象,只需將函數(shù)y=sinx的圖象(
A.向左平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向右平移 個(gè)長(zhǎng)度單位

【答案】C
【解析】解:∵y=cos(x+

=cos(﹣x﹣

=sin[ ﹣(﹣x﹣ )]

=sin(x+ ),

∴要得到y(tǒng)=sin(x+ )的圖象,只需將函數(shù)y=sinx的圖象向左平移 個(gè)長(zhǎng)度單位,

故選C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD(AB>AD)的周長(zhǎng)為12,若將它關(guān)于對(duì)角線AC折起后,使邊AB與CD交于點(diǎn)P(如圖所示),則△ADP面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos2x的圖象向左平移 個(gè)單位后得到函數(shù)g(x)的圖象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的滿足 ,則φ的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖程序框圖,運(yùn)行相應(yīng)的程序,則程序運(yùn)行后輸出的結(jié)果為(
A.7
B.9
C.10
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程x2+ax﹣ +1=0.
(1)若a是從1,2,3這三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2這三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程中有實(shí)根的概率;
(2)若a是從區(qū)間[0,3]中任取的一個(gè)數(shù),b是從區(qū)間[0,2]中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: ,F(xiàn)1 , F2分別為左右焦點(diǎn),在橢圓C上滿足條件 的點(diǎn)A有且只有兩個(gè)
(1)求橢圓C的方程
(2)若過(guò)點(diǎn)F2的兩條相互垂直的直線l1與l2 , 直線l1與曲線y2=4x交于兩點(diǎn)M、N,直線l2與橢圓C交于兩點(diǎn)P、Q,求四邊形PMQN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的連續(xù)函數(shù)f(x)滿足f(1)=2,且f(x)在R上的導(dǎo)函數(shù)f′(x)<1,則不等式f(x)<x+1的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD為菱形,E為棱PB的中點(diǎn),O為AC與BD的交點(diǎn),
(Ⅰ)證明:PD∥平面EAC
(Ⅱ)證明:平面EAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(1,2), =(﹣3,2), 當(dāng)k=時(shí),(1)k + ﹣3 垂直;
當(dāng)k=時(shí),(2)k + ﹣3 平行.

查看答案和解析>>

同步練習(xí)冊(cè)答案