已知圓內(nèi)一定點(diǎn),為圓上的兩不同動(dòng)點(diǎn).
(1)若兩點(diǎn)關(guān)于過(guò)定點(diǎn)的直線對(duì)稱,求直線的方程.
(2)若圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,圓與圓交于兩點(diǎn),且,求圓的方程.

(1)的方程可化為,
,
又直線過(guò),故直線的方程為         …………5分
(2)設(shè)A關(guān)于直線對(duì)稱, ,
,因此設(shè)圓的方程為
的方程為
兩圓的方程相減,即得兩圓公共弦所在直線的方程
到直線的距離為,
解得
的方程為

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)系中,直線截以原點(diǎn)為圓心的圓所得的弦長(zhǎng)為
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于,當(dāng)長(zhǎng)最小時(shí),求直線的方程;
(3)問(wèn)是否存在斜率為的直線,使被圓截得的弦為,以為直徑的圓經(jīng)過(guò)原點(diǎn).若存在,寫出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓和直線
(1) 求證:不論取什么值,直線和圓總相交;
(2) 求取何值時(shí),圓被直線截得的弦最短,并求最短弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
求過(guò)直線和圓的交點(diǎn),且滿足下列條件之一的圓的方程.   (1)過(guò)原點(diǎn);       (2)有最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)已知圓經(jīng)過(guò)、兩點(diǎn),且圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)若直線經(jīng)過(guò)點(diǎn)且與圓相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

、已知圓,直線
(1)求證:直線恒過(guò)定點(diǎn);
(2)設(shè)與圓交于兩點(diǎn),若,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知定點(diǎn)A(4,0)和圓x2+y2=4上的動(dòng)點(diǎn)B,點(diǎn)P分AB之
比為2∶1,求點(diǎn)P的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

過(guò)原點(diǎn)的直線交雙曲線 于P,Q兩點(diǎn),現(xiàn)將坐標(biāo)平面沿直線y= -x折成直二面角,則折后PQ長(zhǎng)度的最小值等于

A. B.4 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知圓的圓心在軸的正半軸上,且圓與圓 相外切,又和直線相切,求圓的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案