(2012·遼寧)已知兩個(gè)非零向量a,b滿足|a+b|=|a-b|,則下面結(jié)論正確的是(  )

A.a(chǎn)∥b B.a(chǎn)⊥b

C.|a|=|b| D.a(chǎn)+b=a-b

 

B

【解析】將向量的模相等變?yōu)橄蛄康钠椒较嗟惹蠼猓?/p>

因?yàn)閨a+b|=|a-b|,

所以(a+b)2=(a-b)2,

即a·b=0,故a⊥b.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科幾何體的表面積、體積(解析版) 題型:選擇題

如圖所示,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.則棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值是(    )

A. 2:1

B. 1:1

C. 1:2

D. 1:3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科三角函數(shù)恒等變形(解析版) 題型:選擇題

已知,則tan為(  )

A.

B.

C. 2

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(四)(解析版) 題型:填空題

如圖所示,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點(diǎn),E,F(xiàn)分別是點(diǎn)A在PB,PC上的射影,給出下列結(jié)論:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正確結(jié)論的序號(hào)是________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(四)(解析版) 題型:選擇題

類比“兩角和與差的正弦公式”的形式,對(duì)于給定的兩個(gè)函數(shù):S(x)=ax-a-x,C(x)=

ax+a-x,其中a>0,且a≠1,下面正確的運(yùn)算公式是(  )

①S(x+y)=S(x)C(y)+C(x)S(y);

②S(x-y)=S(x)C(y)-C(x)S(y);

③2S(x+y)=S(x)C(y)+C(x)S(y);

④2S(x-y)=S(x)C(y)-C(x)S(y).

A.①② B.③④ C.①④ D.②③

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(六)(解析版) 題型:解答題

已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)A(1,-2).

(1)求拋物線C的方程,并求其準(zhǔn)線方程;

(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(六)(解析版) 題型:填空題

袋中有3個(gè)黑球,1個(gè)紅球.從中任取2個(gè),取到一個(gè)黑球得0分,取到一個(gè)紅球得2分,則所得分?jǐn)?shù)ξ的數(shù)學(xué)期望E(ξ)=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:解答題

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:解答題

已知函數(shù)f(x)=-2x+4,令Sn=f()+f()+f()+…+f()+f(1).

(1)求Sn;

(2)設(shè)bn=(a∈R)且bn<bn+1對(duì)所有正整數(shù)n恒成立,求a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案