4.已知原命題“若a>b>0,則$\frac{1}{a}$<$\frac{1}$”,則原命題,逆命題,否命題,逆否命題中真命題個數(shù)為( 。
A.0B.1C.2D.4

分析 根據(jù)逆否命題的等價性分別進(jìn)行判斷即可.

解答 解:若a>b>0,則$\frac{1}{a}$<$\frac{1}$成立,則原命題為真命題,則逆否命題為真命題,
命題的逆命題為若$\frac{1}{a}$<$\frac{1}$,則a>b>0,為假命題,當(dāng)a<0,b>0時,結(jié)論就不成立,則逆命題為假命題,否命題也為假命題,
故真命題的個數(shù)為2個,
故選:C

點(diǎn)評 本題主要考查四種命題的關(guān)系,根據(jù)逆否命題的等價性只需要判斷兩個命題的真假即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,將y=f(x)的圖象向右平移$\frac{π}{4}$個單位長度后得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)y=g(x)的解析式;
(2)在△ABC中,角A,B,C滿足2sin2$\frac{A+B}{2}$=g(C+$\frac{π}{3}$)+1,且其外接圓的半徑R=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.過橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$左焦點(diǎn)F1作弦AB,則△ABF2(F2為右焦點(diǎn))的周長是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F,過點(diǎn)F作與x軸垂直的直線l交兩漸近線于A,B兩點(diǎn),且與雙曲線在第一象限的交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),λμ=$\frac{1}{16}$,則該雙曲線的離心率為( 。
A.$\frac{3\sqrt{2}}{2}$B.$\frac{3\sqrt{5}}{5}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四邊形ABCD為矩形,PB=20,BC=30,PA⊥平面ABCD.
(1)證明:平面PCD⊥平面PAD;
(2)當(dāng)AB的長為多少時,面PAB與面PCD所成的二面角為60°?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(1,0,1),$\overrightarrow$=(0,1,1),向量$\overrightarrow{a}$-k$\overrightarrow$與$\overrightarrow{a}$垂直,k為實(shí)數(shù).
(I)求實(shí)數(shù)k的值;
(II)記$\overrightarrow{c}$=k$\overrightarrow{a}$,求向量$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{c}$-$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$,則f′(x)=( 。
A.$\frac{x-1}{{e}^{x}}$B.$\frac{x+1}{{e}^{x}}$C.$\frac{-x-1}{{e}^{x}}$D.$\frac{1-x}{{e}^{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.${(2x-\frac{1}{x})^4}$展開式中的常數(shù)項是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+ax-1滿足f(2016)=f(-2014),且函數(shù)g(x)=bx(b>0,且b≠1)的圖象過點(diǎn)(2,4).
(1)求函數(shù)f(x),g(x)的解析式;
(2)函數(shù)y=f(g(x))+m+2在x∈[-3,3]上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案