19.已知數(shù)列{an}是等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=log2x,則a4=( 。
A.-log2(3+2$\sqrt{2}$)B.-log2($\sqrt{2}$+1)C.log2(3+2$\sqrt{2}$)D.log2($\sqrt{2}$+1)

分析 根據(jù)等差數(shù)列的定義得到:2a2=a1+a3,由此列出x的值,易求a4值.

解答 解:因為數(shù)列{an}是等差數(shù)列,所以a1+a3=2a2,即f(x+1)+f(x-1)=0,又f(x)=log2x,
所以log2(x+1)+log2(x-1)=0,
整理得x2-1=1,
解得x1=$\sqrt{2}$,或x2=-$\sqrt{2}$.
當(dāng)x1=$\sqrt{2}$時,a1=f(x+1)=f($\sqrt{2}$+1)=log2($\sqrt{2}$+1),d=a2-a1=0-log2($\sqrt{2}$+1)=log2($\sqrt{2}$-1),
∴a4=log2($\sqrt{2}$+1)+(4-1)×log2($\sqrt{2}$-1)=log2($\sqrt{2}$+1)•$\frac{1}{(\sqrt{2}-1)^{3}}$=-log2(3+2$\sqrt{2}$)
故選:A.

點評 本題是求等差數(shù)列的通項公式,運用等差中項概念列出關(guān)于x的方程,求解x,然后代回求首項,題目體現(xiàn)的解題思想是數(shù)學(xué)轉(zhuǎn)化思想和方程思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知直四棱柱ABCD-A1B1C1D1中,AA1=2,底面ABCD是直角梯形,A是直角,AB∥CD,AB=4,AD=2,DC=1,求異面直線BC1與DC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(1,1)=1,f(m,n)∈N+(m,n∈N+),且對任意m,n∈N+,都有:
(1)f(m,n+1)=f(m,n)+2;
(2)f(m+1,1)=2f(m,1)給出以下三個結(jié)論:①f(1,5)=9; ②f(5,1)=16; ③f(5,6)=26.
其中正確的個數(shù)為(  )
A.3B.2C.1D.0
51234

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面幾何里,已知直角三角形SAB的兩邊SA,SB互相垂直,且SA=a,SB=b,則AB邊上的高h=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$; 拓展到空間,三棱錐S-ABC的三條側(cè)棱SA、SB、SC兩兩相互垂直,且SA=a,SB=b,SC=c,則點S到面ABC的距離h′=$\frac{abc}{\sqrt{{a}^{2}^{2}+^{2}{c}^{2}+{c}^{2}{a}^{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\frac{1}{x+1}$,點A0表示坐標(biāo)原點,點An(n,f(n))(n∈N*),若向量an=$\overrightarrow{{A}_{0}{A}_{1}}$+$\overrightarrow{{A}_{1}{A}_{2}}$+…+$\overrightarrow{{A}_{n-1}{A}_{n}}$,θn是an與i的夾角(其中i=(1,0)).則tanθ1+tanθ2+tanθ3等于( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在平行四邊形ABCD中,AC與BD相交于點O,E是線段OD中點,AE的延長線交DC于點F,若$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{3}\overrightarrow a+\overrightarrow b$B.$\frac{1}{2}\overrightarrow a+\overrightarrow b$C.$\overrightarrow a+\frac{1}{3}$$\overrightarrow b$D.$\overrightarrow a+\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖(1),在三角形ABC中,AB⊥AC,若AD⊥BC,則AB2=BD•BC;若類比該命題,如圖(2),三棱錐A-BCD中,AD⊥面ABC若A點在三角形BCD所在平面內(nèi)的射影為M,則有${S}_{△ABC}^{2}={S}_{△BCM}•{S}_{△BCD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)a、b、c∈R+,求證:$\frac{{a}^{2}}{b+c}$+$\frac{^{2}}{c+a}$+$\frac{{c}^{2}}{a+b}$≥$\frac{a+b+c}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$y=\frac{1}{{ln(-{x^2}+2x)}}$的定義域是(0,1)∪(1,2).

查看答案和解析>>

同步練習(xí)冊答案