【題目】數(shù)學(xué)老師給出一個函數(shù),甲、乙、丙、丁四個同學(xué)各說出了這個函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對稱;。不是函數(shù)的最小值.老師說:你們四個同學(xué)中恰好有三個人說的正確.那么,你認(rèn)為____說的是錯誤的.
【答案】乙
【解析】
根據(jù)四位同學(xué)的回答,不妨假設(shè)其中的任何三個同學(xué)回答正確,然后推出另一位同學(xué)的回答是否正確來分析,體現(xiàn)了反證法的思想.
如果甲、乙兩個同學(xué)回答正確,
因?yàn)樵?/span>上函數(shù)單調(diào)遞增,
所以丙說:在定義域R上函數(shù)的圖象關(guān)于直線對稱是錯誤的,
此時是函數(shù)的最小值,所以丁的回答也是錯誤的,與四個同學(xué)中恰好有三個人說的正確矛盾,
所以應(yīng)該是甲、乙兩個同學(xué)有一個回答錯誤,
此時丙正確,則乙就是錯誤的.
故答案為:乙.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(為常數(shù))滿足條件,且方程有兩個相等的實(shí)數(shù)根.
(1)求函數(shù)的解析式;
(2)是否存在實(shí)數(shù)使函數(shù)的定義域和值域分別為和?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中, , 與交于點(diǎn),現(xiàn)將沿折起得到三棱錐, , 分別是, 的中點(diǎn).
(1)求證: ;
(2)若三棱錐的最大體積為,當(dāng)三棱錐的體積為,且為銳角時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)不超過20人,每人需交費(fèi)用800元;若旅行團(tuán)人數(shù)超過20人,則給予優(yōu)惠:每多1人,人均費(fèi)用減少10元,直到達(dá)到規(guī)定人數(shù)60人為止.旅行社需支付各種費(fèi)用共計(jì)10000元.
(1)寫出每人需交費(fèi)用S關(guān)于旅行團(tuán)人數(shù)的函數(shù);
(2)旅行團(tuán)人數(shù)x為多少時,旅行社可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動.為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個小組中隨機(jī)抽取10名學(xué)生參加問卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:
(1)從參加問卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名,求這兩名學(xué)生來自同一個小組的概率;
(2)在參加問卷調(diào)查的10名學(xué)生中,從來自甲、丙兩個小組的學(xué)生中隨機(jī)抽取兩名,用表示抽得甲組學(xué)生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意實(shí)數(shù),,,給出下列命題,其中真命題是( )
A.“”是“”的充要條件B.“”是“”的充分條件
C.“”是“”的必要條件D.“是無理數(shù)”是“是無理數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)、,直線、相交于點(diǎn),且它們的斜率之積為,記動點(diǎn)的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)直線與曲線交于、兩點(diǎn),若直線與斜率之積為,求證:直線過定點(diǎn),并求定點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com