2.在正方體ABCD-A1B1C1D1中:
(Ⅰ)求證:AC∥平面A1BC1;
(Ⅱ)求證:平面A1BC1⊥平面BB1D1D.

分析 (Ⅰ)證明四邊形ACC1A1為平行四邊形,可得AC∥A1C1,即可證明AC∥平面A1BC1;
(Ⅱ)證明A1C1⊥平面BB1D1D,即可證明平面A1BC1⊥平面BB1D1D.

解答 證明:(Ⅰ)因為AA1∥CC1,所以四邊形ACC1A1為平行四邊形,…(2分)
所以AC∥A1C1,又A1C1?平面A1BC1,AC?平面A1BC1,AC∥平面A1BC1; …(5分)
(Ⅱ)易知A1C1⊥B1D1,因為BB1⊥平面A1B1C1D1,所以BB1⊥A1C1,…(7分)
因為BB1∩B1D1=B1,所以A1C1⊥平面BB1D1D,
因為A1C1?平面A1BC1,所以平面A1BC1⊥平面BB1D1D.…(10分)

點評 本題考查線面平行的判定、考查線面垂直、面面垂直的判定,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.某學校高二年級共有編號為1班,2班,3班,a,10班等10個班,每個班均有50個學生,現(xiàn)在需要用系統(tǒng)抽樣的方法從每個班中抽取1人,得到一個容量為10的樣本.首先,在給全體學生編號時,規(guī)定從1班到10班,各個學生的編號從小到大,即按1班從001到050,2班從051到100,3班從101到150,p,以此類推,一直到10班的50個學生編號為451到500.若用簡單隨機抽樣的方法從1班抽到的編號為6號,則在6班中應(yīng)抽取學生的編號為( 。
A.12B.56C.256D.306

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知如圖正四面體SABC的側(cè)面積為$48\sqrt{3}$,O為底面正三角形ABC的中心.
(1)求證:SA⊥BC;
(2)求點O到側(cè)面SABC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},則(∁UA)∩B等于( 。
A.{0,4}B.{0,3,4}C.{0,2,3,4}D.{2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知b>0,log3b=a,log6b=c,3d=6,則下列等式成立的是( 。
A.a=2cB.d=acC.a=cdD.c=ad

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+2bx+c,且f(1)=f(3)=-1.設(shè)a>0,將函數(shù)f(x)的圖象先向右平移a個單位長度,再向下平移a2個單位長度,得到函數(shù)g(x)的圖象.
(Ⅰ)若函數(shù)g(x)有兩個零點x1,x2,且x1<4<x2,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)連續(xù)函數(shù)在區(qū)間[m,n]上的值域為[λ,μ],若有$\frac{μ-λ}{n-m}>8$,則稱該函數(shù)為“陡峭函數(shù)”.若函數(shù)g(x)在區(qū)間[a,2a]上為“陡峭函數(shù)”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點,且BF⊥平面ACE,BD∩AC=G.
(1)求證:AE⊥平面BCE;
(2)求三棱錐E-ADC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知直線l1:3x-y+2=0,l2:x+my-3=0,若l1∥l2,則m的值等于-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知在△ABC中,∠ACB=$\frac{π}{2}$,AB=2BC,現(xiàn)將△ABC繞BC所在直線旋轉(zhuǎn)到△PBC,設(shè)二面角P-BC-A大小為θ,PB與平面ABC所成角為α,PC與平面PAB所成角為β,若0<θ<π,則(  )
A.$α≤\frac{π}{3}$且$sinβ≤\frac{{\sqrt{3}}}{3}$B.$α≤\frac{π}{3}$且$sinβ<\frac{{\sqrt{3}}}{3}$C.$α≤\frac{π}{6}$且$β≥\frac{π}{3}$D.$α≤\frac{π}{6}$且$β<\frac{π}{3}$

查看答案和解析>>

同步練習冊答案