(1)存在x∈R,使得g(x)>0,
即存在x∈R,使得ax
2-2x-2>0,
當(dāng)a>0時(shí),滿足要求;當(dāng)a=0時(shí),滿足要求;
當(dāng)a<0時(shí),△>0,解得
-<a<0綜上得,
a>-(4分)
(2)f(x)=e
x•g(x)=e
x•(ax
2-2x-2)
∴f′(x)=(e
x)′•(ax
2-2x-2)+e
x•(ax
2-2x-2)′
=e
x•(ax
2-2x-2)+e
x•(2ax-2)
=e
x•[ax
2+(2a-2)x-4]
設(shè)|sinx|=t,(0≤t≤1),則轉(zhuǎn)化為求函數(shù)y=f(t),(0≤t≤1)的值域.
當(dāng)a=0時(shí),f′(x)=-2e
x•(x+2)<0,此時(shí)函數(shù)f(t)在[0,1]上為減函數(shù),
∴函數(shù)f(t)的值域?yàn)閇f(1),f(0)],即[(a-4)e,-2]
當(dāng)a<0時(shí),
f′(x)=ex•[ax2+(2a-2)x-4]=a•ex•(x-)(x+2)<0此時(shí)函數(shù)f(t)在[0,1]上為減函數(shù),
∴函數(shù)f(t)的值域?yàn)閇f(1),f(0)],即[(a-4)e,-2](6分)
當(dāng)a>0時(shí),
f′(x)=ex•[ax2+(2a-2)x-4]=a•ex•(x-)(x+2)令f′(x)=0,解得
x=或x=-2(舍).
當(dāng)x變化時(shí),f(x)與f′(x)的變化情況如下表:
若
≥1,即0<a≤2時(shí),函數(shù)f(t)在[0,1]上為減函數(shù).
∴函數(shù)f(t)的值域?yàn)閇f(1),f(0)],即[(a-4)e,-2]
若
0<<1,即a>2時(shí),函數(shù)f(t)在
(0,)上遞減,在
(,1)上遞增
∴
ymin=f()=-2e函數(shù)f(t)在[0,1]上的最大值為f(0)與f(1)中的較大者
∵f(0)=-2,f(1)=(a-4)e,∴f(1)-f(0)=(a-4)e+2
∴當(dāng)
a>4-時(shí),f(1)>f(0),此時(shí)y
max=f(1)=(a-4)e;
當(dāng)
a=4-時(shí),f(1)=f(0),此時(shí)y
max=f(0)=f(1)=-2;
當(dāng)
2<a<4-時(shí),f(1)<f(0),此時(shí)y
max=f(0)=-2(13分)
綜上,當(dāng)a≤2時(shí),函數(shù)f(|sinx|)的值域?yàn)閇(a-4)e,-2];
當(dāng)
2<a≤4-時(shí),函數(shù)f(|sinx|)的值域?yàn)?span mathtag="math" >[-2
e,-2];
當(dāng)
a>4-時(shí),函數(shù)f(|sinx|)的值域?yàn)?span mathtag="math" >[-2
e,(a-4)e].(14分)