【題目】已知函數(shù).

(1)若函數(shù)的最大值是最小值的倍,求實數(shù)的值;

(2)若函數(shù)存在零點,求函數(shù)的零點.

【答案】(1).(2)當時,零點為;當時,零點為

【解析】

1)將整理為,換元可得,;根據(jù)對稱軸位置的不同,分別在,四種情況下構(gòu)造最大值和最小值關(guān)系的方程,解方程求得結(jié)果;(2)根據(jù)(1)中最值的取值范圍可知若存在零點,必有,從而可知的取值,進而得到零點.

(1)

時,,令,

①當時,;

,解得:

得:

②當時,;

,解得:

得:

③當時,,

,解得:

得:

④當時,,

,解得:

得:

綜上所述:

(2)由(1)知,,

若函數(shù)存在零點,則必有:

①當時,,此時函數(shù)的零點為:

②當時,,此時函數(shù)的零點為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,過且垂直于軸的焦點弦的弦長為,過的直線交橢圓,兩點,且的周長為.

(1)求橢圓的方程;

(2)已知直線,互相垂直,直線且與橢圓交于點,兩點,直線且與橢圓交于,兩點.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計劃投資兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為(注:利潤與投資金額單位:萬元).

(1)該公司現(xiàn)有100萬元資金,并計劃全部投入兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

(2)怎樣分配這100萬元資金,才能使公司的利潤總和獲得最大?其最大利潤總和為多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為:為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于,兩點.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若點的極坐標為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為,為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應(yīng)的參數(shù),射線與曲線交于點.

(Ⅰ)求曲線,的標準方程;

(Ⅱ)若點,在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得25萬元~ 1600萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,獎金不超過75萬元,同時獎金不超過投資收益的20%(:設(shè)獎勵方案函數(shù)模型為y=f (x)時,則公司對函數(shù)模型的基本要求是:x[251600]時,①f(x)是增函數(shù);f (x) 75恒成立; 恒成立.

(1)判斷函數(shù)是否符合公司獎勵方案函數(shù)模型的要求,并說明理由;

(2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動,其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星,每人獲得一個紀念品,其數(shù)據(jù)表格如下:

(Ⅰ)求此活動中各公園幸運之星的人數(shù);

(Ⅱ)從乙和丙公園的幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;

(Ⅲ)電視臺記者對乙公園的簽名人進行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計結(jié)果如下(單位:人):

據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認為有興趣研究“紅軍長征”歷史與性別有關(guān).

附臨界值表及公式: ,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鞏固全國文明城市創(chuàng)建成果,今年吉安市開展了拆除違章搭建鐵皮棚專項整治行為.為了了解市民對此項工作的“支持”與“反對”態(tài)度,隨機從存在違章搭建的戶主中抽取了男性、女性共名進行調(diào)查,調(diào)查結(jié)果如下:

支持

反對

合計

男性

女性

合計

(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認為對此項工作的“支持”與“反對”態(tài)度與“性別”有關(guān);

(2)現(xiàn)從參與調(diào)查的女戶主中按分層抽樣的方法抽取人進行調(diào)查,分別求出所抽取的人中持“支持”和“反對”態(tài)度的人數(shù);

(3)現(xiàn)從(2)中所抽取的人中,再隨機抽取人贈送小品,求恰好抽到人持“支持”態(tài)度的概率?

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進行了“本屆奧運會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機抽取了50人,具體的調(diào)查結(jié)果如表:

班號

一班

二班

三班

四班

五班

六班

頻數(shù)

5

9

11

9

7

9

滿意人數(shù)

4

7

8

5

6

6


(1)在高三年級全體學(xué)生中隨機抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對象中隨機選取4人進行追蹤調(diào)查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習冊答案