設(shè)橢圓M1(a>)的右焦點(diǎn)為F1,直線lxx軸交于點(diǎn)A,若12 (其中O為坐標(biāo)原點(diǎn))

(1)求橢圓M的方程;

(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓Nx2(y2)21的任意一條直徑(E,F為直徑的兩個端點(diǎn)),求·的最大值.

 

11.211.

【解析】(1)由題設(shè)知,AF1,由2

,解得a26.

所以橢圓M的方程為M1.

(2)設(shè)圓Nx2(y1)21的圓心為N,

()·()()·()2221.

從而求的最大值轉(zhuǎn)化為求2的最大值.

因?yàn)?/span>P是橢圓M上的任意一點(diǎn),設(shè)P(x0,y0),所以1,

63,因?yàn)辄c(diǎn)N (0,2),所以2(y02)2=-2(y01)212.

因?yàn)?/span>y0[],所以當(dāng)y0=-1時,2取得最大值12.所以的最大值為11.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練16練習(xí)卷(解析版) 題型:選擇題

已知橢圓1(0<b<2)y軸交于A,B兩點(diǎn),點(diǎn)F為該橢圓的一個焦點(diǎn),則ABF面積的最大值為(  )

A1 B2 C4 D8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:填空題

下列四個正方體中,A,B為正方體的兩個頂點(diǎn),M,NP分別為其所在棱的中點(diǎn),能得出直線AB平面MNP的圖形的序號是________(寫出所有符合要求的圖形序號)

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練11練習(xí)卷(解析版) 題型:選擇題

如圖,多面體ABCD?EFG的底面ABCD為正方形,FCGD2EA,其俯視圖如下,則其正視圖和側(cè)視圖正確的是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)cos x(x(0,2π))有兩個不同的零點(diǎn)x1,x2,方程f(x)m有兩個不同的實(shí)根x3,x4.若把這四個數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實(shí)數(shù)m的值為(  )

A.- B. C. D.-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:填空題

設(shè)圓C的圓心與雙曲線1(a>0)的右焦點(diǎn)重合,且該圓與此雙曲線的漸近線相切,若直線lxy0被圓C截得的弦長等于2,則a的值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題

過拋物線y22px焦點(diǎn)F作直線l交拋物線于AB兩點(diǎn),O為坐標(biāo)原點(diǎn),則ABO(  )

A.銳角三角形 B.直角三角形

C.不確定 D.鈍角三角形

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷4練習(xí)卷(解析版) 題型:選擇題

一個正三棱柱的正視圖是邊長為的正方形,則它的外接球的表面積等于(  )

A B. C D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:選擇題

0,1,,9十個數(shù)字,可以組成有重復(fù)數(shù)字的三位數(shù)的個數(shù)為(  )

A243 B252 C261 D279

 

查看答案和解析>>

同步練習(xí)冊答案