【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù)都有成立,則稱上的有界函數(shù)其中稱為函數(shù)的一個上界已知函數(shù)

(1)若函數(shù)為奇函數(shù),求實數(shù)的值;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以5為上界的有界函數(shù),求實數(shù)的取值范圍

【答案】(1)(2);(3)

【解析】

試題(1)利用奇函數(shù)的定義,建立方程即可求解實數(shù)的值(2)求出函數(shù)在區(qū)間上的值域為,結(jié)合新定義,即可求得結(jié)論;(3)由題意得函數(shù)上是以為上界的有界函數(shù)在區(qū)間上恒成立可得上恒成立,求出左邊的最大值右邊的最小值即可求實數(shù)的范圍

試題解析:(1)因為函數(shù)為奇函數(shù),

所以,

,,而當(dāng)時不合題意,

(2)由(1)得:,

,易知在區(qū)間上單調(diào)遞增,

所以函數(shù)在區(qū)間上單調(diào)遞增,

所以函數(shù)在區(qū)間上的值域為所以,

故函數(shù)在區(qū)間上的所有上界構(gòu)成集合為

(3)由題意知,上恒成立,

,

上恒成立

設(shè),,,

易知上遞增,

設(shè),

所以上遞減,

上的最大值為上的最小值為,

所以實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足a1= +3.
(1)證明:{an+1}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點,BC=AC=CC1 , 則CN與AM所成角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓.

(1)若點為圓上的動點,求線段中點所形成的曲線的方程;

(2)若直線過點,且被(1)中曲線截得的弦長為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項和為,等比數(shù)列的前項和為,.

(1),求的通項公式;

(2),.

【答案】(1);(2)21或.

【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項公式;(2)由,求出的值,再求出的值,求出。

試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為,即.

(1)∵,結(jié)合,

.

(2)∵,解得或3,

當(dāng)時,,此時;

當(dāng)時,,此時.

型】解答
結(jié)束】
20

【題目】如圖,已知直線與拋物線相交于兩點, ,且點的坐標(biāo)為.

1的值;

2為拋物線的焦點, 為拋物線上任一點,的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD為矩形,PA⊥平面ABCD,點E是棱PD的中點,點F是PC的中點F.

(1)證明:PB∥平面AEC;
(2)若ABCD為正方形,探究在什么條件下,二面角C﹣AF﹣D大小為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數(shù)且銷售量近似地滿足f(t)=-2t+200(1t50,tN)前30天價格為g(t)=t+30(1≤t≤30,tN),后20天價格為g(t)=45(31≤t≤50,tN).

(1)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系式;

(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于直徑為BC的圓O,過點A作圓O的切線交CB的延長線于點P,∠BAC的平分線分別交BC和圓O于點D、E,若PA=2PB=10.

(1)求證:AC=2AB;
(2)求ADDE的值.

查看答案和解析>>

同步練習(xí)冊答案