【答案】C
【解析】解:根據(jù)題意,分2種情況討論:
①、第一類三個男生每個大學各推薦一人,兩名女生分別推薦北京大學和清華大學,
共有 =12種推薦方法;
②、將三個男生分成兩組分別推薦北京大學和清華大學,其余2個女生從剩下的2個大學中選,
共有 =12種推薦方法;
故共有12+12=24種推薦方法;
故選:C.
根據(jù)題意,分2種情況討論:①、第一類三個男生每個大學各推薦一人,兩名女生分別推薦北京大學和清華大學;②、將三個男生分成兩組分別推薦北京大學和清華大學,其余2個女生從剩下的大學中選;分別求出每種情況下的推薦方法數(shù)目,由加法原理將其數(shù)目相加即可得答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(m,﹣1), =( )
(1)若m=﹣ ,求 與 的夾角θ;
(2)設(shè) . ①求實數(shù)m的值;
②若存在非零實數(shù)k,t,使得[ +(t2﹣3) ]⊥(﹣k +t ),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過村莊A有兩條互相垂直的筆直公路AB和AC,根據(jù)規(guī)劃擬在兩條公路圍成的直角區(qū)域內(nèi)建一工廠P,為了倉庫存儲和運輸方便,在兩條公路上分別建兩個倉庫M,N(異于村莊A,將工廠P及倉庫M,N近似看成點,且M,N分別在射線AB,AC上),要求MN=2,PN=1(單位:km),PN⊥MN.
(1)設(shè)∠AMN=θ,將工廠與村莊的距離PA表示為θ的函數(shù),記為l(θ),并寫出函數(shù)l(θ)的定義域;
(2)當θ為何值時,l(θ)有最大值?并求出該最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知t為實數(shù),函數(shù)f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函數(shù)y=g(ax+1)﹣kx是偶函數(shù),求實數(shù)k的值;
(2)當x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設(shè)t=4,當x∈[m,n]時,函數(shù)y=|f(x)|的值域為[0,2],若n﹣m的最小值為 ,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)F(0,1),點P在x軸上,點Q在y軸上, =2 , ⊥ ,當點P在x軸上運動時,點N的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點F的直線l交曲線C于A,B兩點,且曲線C在A,B兩點處的切線相交于點M,若△MAB的三邊成等差數(shù)列,求此時點M到直線AB的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:點M(1,3)不在圓(x+m)2+(y﹣m)2=16的內(nèi)部,命題q:“曲線 表示焦點在x軸上的橢圓”,命題s:“曲線 表示雙曲線”.
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點( ,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)定義在區(qū)間(﹣1,1)內(nèi),對于任意的x,y∈(﹣1,1)有f(x)+f(y)=f( ),且當x<0時,f(x)>0.
(1)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(2)若f(﹣ )=1,求方程f(x)+ =0的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com